
Cartographic Perspectives, Number 96

© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0.

Florence – Poorthuis et al. | 32 

Ate Poorthuis 
KU Leuven

ate.poorthuis@kuleuven.be

Lucas van der Zee 
KU Leuven

luuc.vanderzee@kuleuven.be

Grace Guo 
Georgia Tech

gguo31@gatech.edu

Jo Hsi Keong 
Singapore University of Technology and Design 

johsi.k@gmail.com

Bianchi Dy 
Singapore University of Technology and Design 

bianchi_dy@sutd.edu.sg

DOI: 10.14714/CP96.1645

Florence: a Web-based Grammar of Graphics for Making 
Maps and Learning Cartography

Online, web-based cartography workflows use a dizzying variety of software suites, libraries, and programming lan-
guages. This proliferation of mapmaking technologies, often developed from a software engineering rather than a carto-
graphic foundation, creates a series of challenges for cartography education, research, and practice.

To address these challenges, we introduce a JavaScript-based open-source framework for web-based cartography and data 
visualization. It is built on top of existing open web standards that are already in intensive use for online mapmaking 
today, but provides a framework that is firmly based on cartographic and visualization theory rather than software en-
gineering concepts. Specifically, we adopt concepts from Bertin’s Semiology of Graphics and Wilkinson’s Grammar of 
Graphics to create a language with a limited number of core concepts and verbs that are combined in a declarative style 
of “writing” visualizations. In this paper, we posit a series of design guidelines that have informed our approach, and 
discuss how we translate these tenets into a software implementation and framework with specific use cases and examples. 
We frame the development of the software and the discussion specifically in the context of the use of such tools in cartogra-
phy education.

With this framework, we hope to provide an example of a software for web-based data visualization that is in sync with 
cartographic theories and objectives. Such approaches allow for potentially greater cartographic flexibility and creativity, 
as well as easier adoption in cartography courses.

K E Y W O R D S :  cartography; geovisualization; web mapping: grammar of graphics; software; education

I N T R O D U C T I O N
Cartography has always relied on technology in 
the pursuit of making maps. The start of the twenty-first 
century is no different in that sense. But today’s technolo-
gy has enabled radical changes, and a proliferation in not 
only how we make, but also how we consume maps. A host 
of technologies that came along with Web 2.0 over the last 
twenty years has now changed significantly how we share 
and read (online) maps, even jumpstarting the concept of 
“viral” cartography (Muehlenhaus 2014; Robinson 2019; 

Shannon and Walker 2020). New media, such as web-
based and other online maps, have also opened up new 
opportunities for readers to interact with the map (Roth 
and MacEachren 2016), and have quickly become one of 
the research frontiers in cartography and geovisualization 
(Griffin, Robinson, and Roth 2017).

Along with these changes in consumption, the actual 
practice of creating maps—the how of mapmaking—has 

PEER - REVIEWED ART ICLE

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ate.poorthuis@kuleuven.be
mailto:luuc.vanderzee@kuleuven.be
mailto:gguo31@gatech.edu
mailto:johsi.k@gmail.com
mailto:bianchi_dy@sutd.edu.sg


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 33 

also shifted. Computer-based cartography in the late 
twentieth century was conducted primarily using a small 
number of desktop user interfaces—including mainstays 
such as ESRI’s ArcMap GIS software and Adobe’s vector 
editing software, Illustrator—that were employed to cre-
ate static maps. In contrast, “new” workflows that are fo-
cused on creating web-based maps use a dizzying variety 
of software suites, libraries, and programming languages. 
As just one example, Roth et al. (2014) include 35 differ-
ent technologies in their 2014 assessment of web mapping 
technologies. The six years since their tally have not seen a 
convergence of these technologies—far from it.

This proliferation of map consumption and production 
has brought many new people—not necessarily trained 
in cartography—to the practice of making maps, and has 
created a unique opportunity or even a renaissance for 
the academic field of cartography (MacEachren 2013). 
Certainly, (new) online mapping programs and certificates 
such as the University of Kentucky’s New Maps Plus and 
Penn State’s online geospatial education are an indication 
of a healthy interest from both academia and industry in 
all these new changes and possibilities. As a side-effect of 
this process, new cartographic software now draws from a 
wide range of software development paradigms, reflecting 
the variety of backgrounds of its developers. While this 
has created a welcome diversity in the cartographic soft-
ware landscape, the drawback is that new technologies 
may speak less directly to a consistent set of cartographic 
principles.

This current software landscape creates a series of chal-
lenges for cartography education, research, and practice. 
First, the computer science paradigms on which many 
new technologies are based can be challenging for stu-
dents without prior training in computer science or pro-
gramming experience. This creates barriers to entry and 
can distract from teaching cartographic core principles 
and theory (Sack and Roth 2017; Sack 2018; Ricker and 

Thatcher 2017). Second, many new tools are less grounded 
in traditional cartographic theory, in ways that can limit 
their f lexibility—the much-maligned use of the default 
Web Mercator projection in many mapping tools being 
a case-in-point (Battersby et al. 2014; Šavrič, Jenny, and 
Jenny 2016). Third, the absence of a single, canonical tech-
nology suite or paradigm limits the transferability of skills 
between all these different types of software and libraries.

In this paper, we speak to these challenges by introduc-
ing a JavaScript-based framework for web-based cartog-
raphy and data visualization. It is built on top of existing 
open web standards that are already in intensive use for 
online mapmaking today, but provides a framework—or 
Application Programming Interface (API) in technical 
terms—that is based firmly on cartographic and visual-
ization theory rather than software engineering concepts. 
Specifically, we adopt concepts from Bertin’s Semiology 
of Graphics (2010) and Wilkinson’s Grammar of Graphics 
(2013) to create a “language” with a limited number of 
core concepts and verbs that are combined with a declara-
tive style of “writing” visualizations. With this framework, 
we hope to provide an example of software for web-based 
data visualization that is in sync with cartographic theo-
ries and objectives, and thus allows greater cartographic 
flexibility, lets users be more creative, and is potentially 
easier to adopt in cartography courses.

In the next section, we will first unpack in greater detail 
the aforementioned challenges surrounding web-based 
cartography. In doing so, we provide a survey of the current 
practice of online, interactive cartography. Subsequently, 
we outline the core tenets of our approach and describe the 
core elements of the framework. Finally, we will provide 
specific use cases and examples of how these core elements 
can be combined flexibly to create cartographic visualiza-
tions. We will end the paper by discussing our approach 
and looking ahead to potential future work.

C U R R E N T  S O F T W A R E  A N D  P R A C T I C E S  F O R  C R E A T I N G  A N D 
T E AC H I N G  W E B - B A S E D  C A R TO G R A P H Y

THE LINK BETWEEN CARTOGRAPHIC THEORY AND MAPPING SOFTWARE

Cartography has a long-standing tradition of build-
ing theory around maps. What are maps? How do they 
represent and produce the world (Crampton 2010)? And 

how can we think systematically about their construction 
(MacEachren 2004; Kraak and Ormeling 2011)? At the 
heart of this systematic approach to cartography, we find 



Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 34 

Bertin’s idea of visual variables (Bertin 2010). Coined in 
his 1967 Semiology of Graphics, it is still influencing car-
tographic thought today (cf. the recent special issue on 
Bertin’s legacy in Cartography and Geographic Information 
Science; Harvey 2019).

If we look beyond cartography to the related field of in-
formation visualization, Bertin’s original ideas around vi-
sual variables have been further formalized into a system 
that Wilkinson dubbed the “grammar of graphics” (2013). 
Although there are different versions and interpretations 
of this system (cf. Munzner 2014 for a comprehensive 
treatment), it generally relies on a process of translating1 
data values (be they quantitative or categorical) into the vi-
sual variables2 (e.g., position, size, or colour) of a graphical 
mark3 (e.g., a point or a line). While Wilkinson’s original 
publication was accompanied by a software implementa-
tion of the system, the grammar of graphics didn’t signifi-
cantly catch on in practice until Hadley Wickham imple-
mented a version of it for the R programming language 
(Wickham 2010). Wickham’s implementation—ggplot2—
has helped transform R into one of the key languages for 
data visualization (including maps) used today. It has also 
inspired the adoption of its grammar-of-graphics API into 
a range of other programming languages.

This translation of theory into software brings us to the 
nexus of cartographic theory and its practice. The con-
nection between the two is at the core of cartography (cf. 
Tobler 1959). After all, academic cartographers themselves 
often combine thinking and theorizing about maps with 
the act of making maps. A common approach to comput-
er-based mapmaking uses desktop software with graphi-
cal user interfaces, often combining a GIS software (e.g. 
Esri’s ArcMap) with a vector-editing graphics program 
(e.g., Adobe’s Illustrator) in a single workflow. If not di-
rectly built on top of, these softwares are at least very 
much compatible with cartographic theory. For example, 
they provide straightforward workflows to build multiple 
layers in a map, assign data variables to visual variables, 
or change a map’s projection. We see this reflected in the 
discipline’s textbooks as well: many of the oft-used car-
tography textbooks cover the theory and practice of map-
making without going into specific software-based how-to 
instructions (e.g., Kraak and Ormeling 2011; Slocum et al. 

1. Or encoding, or mapping (depending on the author)

2. Or channels, or aesthetics, or dimensions

3. Or geometries

2009; Dent 2009). The “translation” to software is left to 
an instructor’s own lab materials or a compendium book. 
This split of concerns seems to work reasonably well partly 
because the software and the theory are in sync.

THE ECOSYSTEM OF WEB MAPPING AND 
INTERACTIVE DATA VISUALIZATION

Building on top of cartography, the field of geovisualiza-
tion, with its genesis in the 1980–1990s personal comput-
er era, has capitalized significantly on the affordances of 
new (web) technologies to build interactive mapping in-
terfaces. We see examples of this in early work focused 
on exploratory data analysis (Anselin, Kim, and Syabri 
2004) to more recent examples focused on understand-
ing output of specific algorithms (Fabrikant, Gabathuler, 
and Skupin 2015) or specific data sets (Pezanowski et al. 
2018). Geovisualization systems have become powerful 
mapping and analytical tools for the end user. Despite 
their power, and often due to their bespoke design, they 
can be remarkably easy and convenient to use (e.g., Nost et 
al. 2017; Roth, Ross, and MacEachren 2015). In contrast, 
creating such geovisualization tools remains a complicated 
endeavour, often performed by experts. Although there is 
promising work focused on making geovisualizations easi-
er to create, for example through no- or low-code software 
(e.g., Gahegan et al. 2002; Hardisty and Robinson 2011), 
geovisualizations seem to rely on the use of a wide variety 
of programming languages and software libraries, with-
out a single, or even a small, set of canonical approaches 
emerging.

This proliferation of different approaches is not due to a 
lack of promising work in (academic) cartography. For ex-
ample, Nagel et al. (2013) developed a library, Unfolding, 
for writing interactive maps in Processing and Java, while 
Ledermann and Gartner (2015) provide a “cartographic” 
API for making maps with JavaScript (JS). More recently, 
Degbelo, Sarfraz, and Kray (2020) created AdaptiveMaps, 
a no-code semi-automatic approach to making thematic 
web maps that is based on Bertin’s visual variables. This 
no-code or low-code approach also shares similarities with 
the full-stack (i.e., covering both spatial analysis and car-
tographic functionality) approaches to web cartography 
that commercial providers are now offering—CARTO, 



Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 35 

Mapbox, and Esri are primary examples of companies in 
this space.

Nonetheless, many online web maps are still made 
by utilizing one or more smaller JavaScript librar-
ies. For maps specif ically, Leaflet (leaf letjs.com) and 
OpenLayers(openlayers.org) are the go-to technologies 
for creating “slippy” maps. They use a basemap that can 
be panned and zoomed, similar to the map solutions by 
Apple, Google, and Microsoft that have become com-
monplace. These base maps can subsequently be overlaid 
with additional (thematic) map layers. Similarly, for larger 
datasets, WebGL approaches (which utilize a computer’s 
Graphical Processing Unit for greater performance) such 
as Deck.gl (visgl.github.io/deck.gl) and Mapbox GL (docs.
mapbox.com/mapbox-gl-js/api) exist. For cartographic 
work that goes beyond the “basemap + thematic overlay” 
paradigm, the collection of JavaScript modules collectively 
referred to as D3 (Bostock, Ogievetsky, and Heer 2011; 
d3js.org) has become a commonly used tool.

The reference to D3 also brings us to the connection of 
cartography with the larger field of information visualiza-
tion. D3, although used extensively for mapmaking, did 
not emerge from or for cartography specifically. Instead, 
its key contributors, Heer and Bostock, laboured to devise 
a system that makes it possible to design interactive data 
visualizations in a much more broader sense of the word 
(Bostock and Heer 2009; Heer and Bostock 2010). D3 is 
a relatively low-level implementation of their approach in 
JavaScript. More recently, Heer and colleagues have cre-
ated the Vega system that operates at a higher abstraction 
level and is more squarely based on the grammar of graph-
ics (vega.github.io). It is relatively language-agnostic, as it 
stores and describes visualizations with the interoperable 
JSON standard (Satyanarayan et al. 2017). Along simi-
lar lines, Data Illustrator merges the grammar of graphics 
with vector editing into a single system (Liu et al. 2018) 
through the automatic binding of data variables to visual 
components that designers can easily work with. Although 
many information visualization libraries also support the 
creation of maps, support for key cartographic principles 
(e.g., the selection of an appropriate projection) is often 
not a primary concern.

CHALLENGES FOR EDUCATORS

As we stated before, this splintered state of affairs in web 
mapping brings with it a few specific consequences. With 
so many different (programming) technologies available, 

it has become a formidable challenge to teach online web 
mapping—especially in the context of curricula that are 
not focused heavily on software engineering. As Sack 
(2018, 39) recently pointed out while taking the pulse of 
web mapping education in the United States: “The two 
greatest challenges in teaching web mapping were, unsurpris-
ingly, teaching students how to code and keeping up with rapid 
technology changes in the industry.”

There are different responses possible to the challenge of 
teaching students how to code, which also depend strong-
ly on the specific degree programme in which a web map-
ping course or module is offered. One such approach, 
partly supported by newer tools such as Esri’s online suite, 
is to use low-code solutions. However, as creative or be-
spoke online cartography still requires manual coding, re-
lying only on such solutions might be detrimental to the 
field at large—especially since programming skills are be-
coming increasingly useful in other parts of our discipline. 
Another approach is to treat courses that rely on program-
ming as more advanced or upper-level and to set up spe-
cific prerequisites to enrolment. This has several potential 
downsides (cf. Ricker and Thatcher 2017)—one of which 
is an increase in the barriers to entry, which is especially 
poignant for domain experts for whom programming is 
often a means to an end.

Instead, we would like to argue for a continued emphasis 
on teaching programming to cartography and GIS stu-
dents. The base technologies of the modern web (HTML, 
CSS, and JavaScript) have reached a level of maturity and 
consistency that makes learning them more straightfor-
ward now, compared to the state of affairs at the start of 
the millennium. We posit that it is mainly the “ jungle” of 
web mapping software, built on top of those base tech-
nologies, that proves difficult to teach. There are several 
reasons for this. Different web mapping software and li-
braries do not operate from a consistent foundation and 
implement similar things in different ways. Furthermore, 
many technologies do not “sync” well with cartograph-
ic theory. This leads to situations where instructors need 
to reserve a significant amount of class time to teach the 
idiosyncrasies of a library rather than core cartographic 
principles. If we add to that the fact that many new tools 
seem to be using significantly different approaches, it is no 
wonder educators are hesitant in taking on this task.

This challenge is exacerbated by the fact that many of the 
current web mapping libraries are either developed out-
side of the discipline or have (design) goals that are not 

http://leafletjs.com/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://openlayers.org/
https://visgl.github.io/deck.gl
https://docs.mapbox.com/mapbox-gl-js/api/
https://docs.mapbox.com/mapbox-gl-js/api/
https://d3js.org/
https://vega.github.io/


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 36 

necessarily in line with cartographic principles. A simple 
illustration: the production of a thematic choropleth map 
that uses a classification scheme to translate a quantitative 
variable to a limited set of colours on the map is a main-
stay in any cartography class. However, it is a surprisingly 
complicated undertaking in most of the popular mapping 
libraries. For the Leaflet mapping library, it requires the 
developer to write a custom function to implement a clas-
sification scheme, and another custom mapping function 
that contains logic to translate data values to colours. And 
then we haven’t even tried to use a non-Mercator projec-
tion! While this approach might be sensible or even pre-
ferred from a software engineering perspective, it becomes 
a pedagogical distraction in a cartography class—akin to 
asking a student in an introductory statistics class to write 
and implement their own fitting function for a linear 
regression.

CONSISTENT SOFTWARE DEVELOPMENT BY 
AND FOR CARTOGRAPHERS

Drawing parallels with the discussion around geocom-
putation and GIS (Harris et al. 2017; Gahegan 2018; 
Poorthuis and Zook 2020), we argue that the academ-
ic field of cartography can address the challenges around 
web mapping by playing a more prominent role in devel-
oping software for this purpose, and, in doing so, build 
stronger connections between visualization practice and 
cartographic and visualization theory.

Here we also draw inspiration from Wickham’s devel-
opment of the ggplot2 library for the R programming 

language (Wickham 2010), which adopts the grammar 
of graphics as its theoretical foundation. Somewhat in 
parallel with ggplot2, the R community has developed a 
constellation of libraries collectively referred to as the ti-
dyverse (Wickham et al. 2019) that provides a consistent 
approach and design to common data science tasks, from 
data manipulation, to modelling, to visualization. It is 
predominantly developed by and for a community of do-
main experts and users, including efforts such as rOpen-
Sci (Boettiger et al. 2015) that organize peer review of 
software. New libraries are continuously being developed 
and adhere to the same tidyverse design principles. This 
consistency is key: the adoption of additional libraries be-
comes much faster and easier for users as they don’t need 
to grasp a new set of design principles or idiosyncrasies 
for every additional library. In an education context, this 
means that only a limited set of software design concepts 
needs to be taught and focus can otherwise remain on do-
main concepts.

Tidyverse-compatible libraries for mapping exist as well: 
ggmap (Kahle and Wickham 2013) and tmap (Tennekes 
2018). In fact, the tidyverse ecosystem can be used very 
effectively by the modern cartographer, but is limited in 
its facility for interactive maps. Most interactive maps are 
created for the web, and creating content for the web is 
not (yet) one of R’s core strengths—although possibilities 
do exist (Chang et al. 2019). We highlight the success of 
the tidyverse approach as an inspirational example and 
ask how we can translate these lessons to the field of web 
mapping.

A  W E B - B A S E D  G R A M M A R  O F  G R A P H I C S  F O R  M A PM A K I N G
In this paper, we introduce Florence: a web-based map-
ping and visualization library that is aimed at addressing 
the challenges outlined in the previous section. To do this, 
we have used a specific set of core tenets as design guide-
lines (DG) in developing the library.

• DG1: A web mapping library should be built on top of 
modern web standards. Using and teaching Florence 
means teaching these technologies (CSS/HTML/JS), 
instead of replacing or hiding them. Florence is a rel-
atively small convenience layer around those technol-
ogies, with its main purpose being to re-anchor web 
mapping on cartographic theory.

• DG2: A web mapping library should take note of 
and leverage the current generation of JavaScript 
frameworks. Such frameworks make web develop-
ment faster and more convenient. Adopting them also 
allows for visualizations to integrate more seamlessly 
in larger web development projects. In addition, skills 
gained through using the library for the purpose of 
mapmaking will transfer to other domains (e.g., UI/
UX design; Roth 2017).

• DG3: A web mapping library should be modular 
rather than one-size-fits-all. This means a reliance on 
small(er) building blocks that can be mixed together 



Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 37 

creatively. Similarly, it should allow the user to extend 
and build their own modules for oft-used functional-
ity or specific visualizations.

• DG4: A web mapping library should perform as little 
magic or “black box” behaviour as possible. While 
such “one-click” solutions might entice new users, 
they generally inhibit an immediate understand-
ing of how and why things work. In addition, black 
boxes can ultimately make creative, custom use more 
difficult. This is an explicit deviation from the low/
no-code approach. We do not advocate for using less 
code but instead endeavour to make code easier to 
understand and reason about.

• DG5: A web mapping library should allow for the 
declarative authoring of visualizations, rather than 
the more common imperative approach. Imperative 
programming—giving step-by-step instructions 
that state how you build up to a final goal—for 
visualizations can often be difficult to reason about, 
as the reader/author needs to build up a mental 
picture of the visualization by running through 
all the imperative steps in the code. Declarative 

programming—stating what the final goal should 
look like—is a better fit for cartography and follows 
a larger trend in information visualization (Heer and 
Bostock 2010; Satyanarayan et al. 2016). Many recent 
JavaScript frameworks (cf. DG2) allow for the adop-
tion of this approach.

• DG6: A web mapping library should be anchored ex-
plicitly on a theoretical foundation. Florence is based 
on the grammar of graphics (adapted for mapmaking 
purposes). This makes it easier to switch between spa-
tial and non-spatial visualizations and build (linked) 
geovisualizations with graphs and maps using the 
same toolset.

• DG7: A web mapping library should provide easy 
ways to “escape” the software abstraction provided. 
If a user wants to get creative and go more low-level 
and use native SVG, or add on another visualization 
library, they should be able to do so. Similarly, if 
they prefer to work with a higher-level of abstraction, 
ready-made modules for commonly used visualiza-
tions should be provided or possible to create.

CO R E  E L E M E N T S
With this set of design guidelines, we built Florence on 
top of Svelte: a reactive JavaScript framework that is no-
table for its simplicity and easy learning curve (svelte.
dev). Svelte is structured around declarative “single file 
components” that combine the three core web technolo-
gies into a single file: HTML and SVG markup for lay-
out; JavaScript for interaction and computation; and CSS 
for styling (DG1). Svelte files look very similar to regular 
HTML files, because they are effectively standard HTML 
files with a little bit of extra logic sprinkled in through a 
well-designed template syntax. Importantly, this syntax 
allows users to create connections between HTML (lay-
out) and JavaScript (interaction and computation) to build 
declarative and reactive components and pages—which 
is exactly what is needed to build visualizations and web 
maps.

There are a number of additional, more technical advan-
tages that Svelte provides over other JavaScript frame-
works, but its main reason for adoption here is the ease 
with which Svelte can be learned and adopted (DG2). This 
is especially the case compared to other frameworks, such 

as React, that rely on powerful but complex software en-
gineering concepts that are relatively difficult to learn for 
non-software engineers.

The central piece of Svelte’s template syntax is the use of 
curly braces ({}) in HTML mark-up. Any JavaScript (or 
references to JS variables) inside such braces will be auto-
matically evaluated. Importantly, updates to variables will 
automatically be reflected in the rendered page. As such, 
Svelte’s “Hello World ” is straightforward to understand, 
even for somebody who has not come into contact with the 
framework before.

<script>
 let name = ‘world’
</script>
<h1>Hello {name}!</h1>

Built on this technical foundation, Florence provides a se-
ries of components that can be imported and combined to 
build visualizations (DG3, DG5), similar to how HTML 
elements are combined to build a web page. Figure 1 

http://svelte.dev
http://svelte.dev


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 38 

shows how these components relate directly to the vari-
ous concepts of the grammar of graphics (DG6). In the 
next sections, we will discuss the core set of components. 
A deeper treatment, including documentation and more 
elaborate examples, can be found at the documentation 
website (florence.spatialnetworkslab.org). Florence can 
be installed into any JavaScript project through the Node 
Package Manager (npm) or by forking or extending any 
of the live code examples on the website. The source code 
for the software can be found on Gitlab (gitlab.com/
spatialnetworkslab/florence).

GRAPHIC & SECTION

Every Florence visualization starts with a Graphic.4 A user 
can think of this as a blank canvas that becomes available 
as a drawing space. Each Graphic has a specific width and 
height (measured in pixels in these examples, but it can 
also be made relative to the web page dimensions). The 
Graphic is like a supercharged SVG element—in fact, 
under the hood, drawing a Graphic will indeed draw an 
SVG element to the page.

In order to create an empty Graphic of 500 by 500 pixels, 
we can import the component from Florence and draw it 
to the page (Figure 2). Properties of components are spec-
ified in a syntax that is similar to HTML attributes. In 
this instance, we give the width and height properties of 
the Graphic a value of 500.

The Graphic has a sister component called a Section. As 
many visualizations consist of multiple panels, facets, and 
insets, Sections can be used to subdivide the Graphic for 
this purpose. Each Section has its own dimensions and 
position and—as we will see later—its own coordinate 
system. For example, we can draw non-overlapping left 
and right panels (Figure 3).

The same logic can be used to draw overlapping Sections, 
such as when multiple map layers need to be drawn on top 
of each other.

MARKS

To actua l ly draw content, we rely on the gram-
mar-of-graphics concept of the mark. A mark specifies a 

4. Florence components are capitalized to distinguish them from HTML 
elements. We set them in monospaced type to make it clear when a reference 
to a component is made.

Figure 1. Relation between Wilkinson’s original grammar of 
graphics concepts and their implementation in Florence, after 
Wickham’s (2010) comparison between Wilkinson and the 
ggplot2 approach.

Figure 2. Graphic component. Here, and in Figures 3–7, the 
code is displayed on the bottom with the rendered visualization 
displayed on the top. Interactive version available at florence.
spatialnetworkslab.org/examples/cp-figure2.

https://florence.spatialnetworkslab.org/
https://gitlab.com/spatialnetworkslab/florence
https://gitlab.com/spatialnetworkslab/florence
https://florence.spatialnetworkslab.org/examples/cp-figure2
https://florence.spatialnetworkslab.org/examples/cp-figure2


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 39 

geometric object whose visual properties can encode data 
attributes. In this sense, marks are similar to the points, 

lines, and polygons central to vector cartography. Florence 
makes the following basic marks available: Point, Symbol, 
Line, Rectangle, Area, Label, and Polygon. Each mark 
supports a set of encoding channels through the proper-
ties of its components. These are categorized by position, 
shape, size, colour, textual attributes, transitional attri-
butes, and interactivity. With these primitive marks, al-
most any visualization can be expressed. Figure 4 shows a 
Point mark drawn in the centre of our Graphic by setting 
the x and y positional properties of the component.

Of course, most visualizations need to draw not just a 
single mark but a larger set of them. Florence provides a 
Layer version of each mark for this purpose. Instead of 
providing a single value each to the x and y properties, we 
can simply provide an array of values, one for each mark. 

Figure 3. Graphic component with two non-overlapping 
Section components. Interactive version available at florence.
spatialnetworkslab.org/examples/cp-figure3.

Figure 4. A simple Point mark, with an x and a y property, in 
the centre of a Graphic. Interactive version available at florence.
spatialnetworkslab.org/examples/cp-figure4.

https://florence.spatialnetworkslab.org/examples/cp-figure3
https://florence.spatialnetworkslab.org/examples/cp-figure3
https://florence.spatialnetworkslab.org/examples/cp-figure4
https://florence.spatialnetworkslab.org/examples/cp-figure4


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 40 

The Layer will draw as many marks as there are values in 
the supplied array. For example, to draw three points:

<PointLayer
 x={[0, 250, 500]}
 y={[250, 250, 250]}
/>

Apart from positioning a Point (or any other mark) with 
individual x and y coordinates, Florence also understands 
GeoJSON natively. Since GeoJSON is the de-facto stan-
dard for storing and sharing spatial data on the web, this 
is an important advantage for web mapping. Any mark 
can be given coordinates in GeoJSON format through the 
geometry property. For example, in Figure 5 we have a 
simple GeoJSON object with a single point representing 
the Dinagat Islands. Its geometry is directly “given” to the 
Point mark without any need for additional translation.

SCALES

If not specified, the coordinate system used inside the 
Graphic or Section will be based on the pixel dimensions. 
However, for most visualizations and maps we don’t want 
to “think” in pixel coordinates. We might not even know 
the pixel coordinates in advance, as the visualization needs 
to grow or shrink dynamically depending on the available 
screen size. To enable this, we need a process to trans-
late data values to positional values. In the context of the 
grammar of graphics, this process is most often referred 
to as scaling. In essence, a scaling function takes a data 
value as input, and outputs the appropriate location on 
the screen (i.e., a pixel coordinate) – mapping from “data 
space” to “pixel space.”

In many software programs, this scaling is performed hid-
den from the user. In Florence, we take the opposite ap-
proach and make scaling explicit and transparent through 
user-supplied scaling functions (DG4). Florence is agnos-
tic about the actual scaling functions used. A user can cre-
ate their own functions, but they can also rely on the D3 
scaling functions that have become close to an industry 
standard for data visualizations. Florence follows the D3 
conventions for scaling functions for this reason.

Scaling functions can be passed to the Graphic or Section, 
where they will be used to create a “local coordinate” sys-
tem by using information about the pixel dimensions of 
the component. Once such a local coordinate system is 

created, marks can be positioned in this local coordinate 
system or “data space,” rather than with absolute pixels. 
This makes it much easier to reason about placing marks 
and annotations within the visualization, and it allows for 
the dynamic resizing of any visualization.

For example, in Figure 6 we create a Graphic with an x-ax-
is based on a continuous variable that ranges from 20,000 
to 40,000, and a y-axis with quantitative values ranging 
from 5000 to 6000. We then place a single point inside 
the Graphic at coordinates [35000, 5500] using the local 

Figure 5. A Point mark positioned with GeoJSON geometry. 
Interactive version available at florence.spatialnetworkslab.org/
examples/cp-figure5.

https://florence.spatialnetworkslab.org/examples/cp-figure5
https://florence.spatialnetworkslab.org/examples/cp-figure5


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 41 

coordinate system. Note that {scaleX} is just a shorthand 
for scaleX={scaleX} in the Svelte framework.

As scaling of geographic coordinates is a special case (i.e., 
the x and y dimensions generally need to be scaled togeth-
er to maintain the aspect ratio), Florence provides built-in 
scaling functions for geographic data. Figure 7 demon-
strates how to scale two triangular polygons using their 
bounding box. The createGeoScales function returns an 
object with a scaleX and scaleY. The spread syntax ({...
geoScales}) is a Svelte shorthand for scaleX={geoScales.
scaleX} scaleY={geoScales.scaleY}.

DEALING WITH DATA

Maps, like any visualization, often rely heavily on 
the transformation, aggregation and f iltering of data. 
Conventional GIS programs offer a wide range of func-
tions for this purpose. While most data transformations 
can be readily performed in JavaScript, this often re-
quires a high level of JS software engineering knowledge. 
Moreover, since JS isn’t designed as a data science lan-
guage per se, the mental model for these transformations 
is much lower-level than ideal for cartography.

Figure 6. A Point mark positioned in “data space.” Interactive 
version available at florence.spatialnetworkslab.org/examples/
cp-figure6.

Figure 7. Scaling polygons while maintaining the aspect ratio. 
Interactive version available at florence.spatialnetworkslab.org/
examples/cp-figure7.

https://florence.spatialnetworkslab.org/examples/cp-figure6
https://florence.spatialnetworkslab.org/examples/cp-figure6
https://florence.spatialnetworkslab.org/examples/cp-figure7
https://florence.spatialnetworkslab.org/examples/cp-figure7


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 42 

To aid in this, we provide a sidecar data handling library 
that is designed to mirror the logic and concepts in ti-
dyverse’s dplyr “grammar of data manipulation” (Wickham 
et al. 2015) (DG6). In this way, any user familiar with the 
tidyverse approach will be able to adopt its logic quickly. 
The source code for the library, including documentation 
on all its functions, can be found on Gitlab at: gitlab.com/
spatialnetworkslab/florence-datacontainer.

The library allows for loading row and column–ori-
ented datasets, as well as GeoJSON data, into a consis-
tent data structure referred to as a DataContainer. This 
DataContainer then offers familiar transformations such 
as:

• Select: for selecting a subset of columns

• Filter: for filtering a subset of rows

• Mutate: for creating new columns (based on some 
calculation)

• Group by: for aggregating data based on a specific 
column

• Summarise: for summarizing data about each afore-
mentioned group

Many geovisualizations allow the end-user to interactively 
filter, subset, and aggregate data, so we consider these data 
transformations as essential ingredients in any web map-
ping toolset. A DataContainer also provides some short-
cuts for accessing oft-used information in map design, 
such as the domain of a variable or its data type.

In addition, it has built-in support for binning with differ-
ent classification schemes, functionality that is useful for 
both non-spatial histograms as well as the classification 
common in choropleth maps. It also allows for the repro-
jection of spatial geometry data. By building on top of the 
open source proj4js library (github.com/proj4js/proj4js), 
any projection supported by the proj4 ecosystem can be 

used to create visualiza-
tions. An example of this 
can be seen in Figure 8, 
which reads in an external 
GeoJSON file projected in 
a country-specific coordi-
nate system. This custom 
projection works out-of-
the-box with Florence and 
the map is automatically 
sized to fit the dimensions 
of the Graphic. Additional 
styling is provided through 
the use  of  the fi l l , 
stroke, and strokewidth 
component  proper t ie s 
(aesthetics). In the second 
panel, the fill aesthetic 
is mapped to a categorical 
colour scheme (through 
the use of a scale provided 
by D3) based on the prov-
ince name.

Commonly used elements 
such legends, graticules, 
and—for non-map visu-
alizations—axes, can be 
created with built-in com-
ponents or the user can 
create their own custom 

Figure 8. A map of Dutch provinces. Dutch spatial data is often provided in a country-specific 
projection and coordinate system (“Rijksdriehoeksstelsel”), which isn’t compatible with most JavaScript 
mapping libraries that rely solely on WGS84. The bottom panel shows a categorical colour scheme 
applied to the province name. Interactive version available at florence.spatialnetworkslab.org/
examples/cp-figure8a and florence.spatialnetworkslab.org/examples/cp-figure8b.

https://gitlab.com/spatialnetworkslab/florence-datacontainer
https://gitlab.com/spatialnetworkslab/florence-datacontainer
https://github.com/proj4js/proj4js
https://florence.spatialnetworkslab.org/examples/cp-figure8a
https://florence.spatialnetworkslab.org/examples/cp-figure8a
https://florence.spatialnetworkslab.org/examples/cp-figure8b


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 43 

implementation using the grammar of graphics (i.e., com-
bine Sections with different marks).

INTERACTION

Although higher levels (a “grammar,” if you will) of ab-
straction for web mapping interactions exist (Roth 2013; 
Roth et al. 2014), we have chosen to rely on a slightly low-
er-level abstraction that is consistent with native brows-
er event listeners for both desktop (mouse) and mobile 
(touch) events (DG1, DG4). We use this approach so that 
knowledge gained with HTML/JavaScript will transfer 
easily to Florence and vice versa. We consider this a useful 
trade-off for geovisualizations because they often need to 
include interactions with both visual elements (e.g., click 

5. e.g., github.com/d3/d3-geo/blob/master/README.md#geoAlbersUsa

on a map element) in addition to more “conventional” page 
elements (e.g., clicking on a button). The same event-lis-
tener approach can be used for both types of elements.

Florence uses an R-tree based spatial index (github.com/
mourner/rbush) for detecting “hits” in an efficient manner 
that scales up to large datasets. Listeners for different user 
events can be set on both Graphics and Sections as well 
as on individual marks. With these basic building blocks, 
any of the common geovisualization interactions (e.g., 
pan, zoom, highlight, brush, select, linked views, etc.) can 
be achieved. Importantly, Florence provides useful infor-
mation about the mark being interacted with, including its 
identifier and its location in both “data space” and “pixel 
space” (see Figure 9 for an example).

S P E C I F I C  U S E  C A S ES  A N D  E X A M P L ES
Florence eases the execution of many common 
tasks in cartography through its flexible combination of 
Sections and marks. For example, map insets—often 
used to show an overview or different parts of non-con-
tiguous countries, can be created by simply creating a 
separate Section for each inset and giving that section 
its own scale/bounding box (and thus its own coordinate 
system). This is difficult to achieve with web mapping 

libraries like Leaflet, and requires the use of a composite, 
custom projection in D35. A common scenario is to display 
the contiguous United States, with Alaska and Hawaii 
as separate insets. Each would have their own, appropri-
ate projections and bounding boxes. To achieve this with 
Florence, GeoJSON data for all states can be filtered into 
three separate DataContainers (one for the contiguous 
United States, one for Alaska, and one for Hawaii) and 

Figure 9. An example of a hover-based interaction. When the user hovers over a province, the province lights up in yellow, and its name is 
displayed beneath the map. Interactive version available at florence.spatialnetworkslab.org/examples/cp-figure9.

https://github.com/d3/d3-geo/blob/master/README.md
https://github.com/mourner/rbush
https://github.com/mourner/rbush
https://florence.spatialnetworkslab.org/examples/cp-figure9


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 44 

each DataContainer is then used to set up a Section with 
its own projection and scaling.

Similarly, small multiples—a grid of smaller maps, each 
showing a different variable (e.g., one for each year in a 
dataset)—can be achieved in an automated fashion by 
using Svelte’s {#each} syntax to repeat a separate Section 
for each variable. In the code example below, years is 
an array of numbers that represent the years in a data-
set. Through Svelte’s slot property syntax (let:cells), the 
Grid component makes an object called cells available to 
all components inside of it. This object contains the x and 
y coordinates for each “cell” or Section so they can be au-
tomatically arranged into a grid formation.

<Grid names={years} let:cells>
 {#each years as year}
  <Section {...cells[year]} {...geoScales}>
   <PolygonLayer
    geometry={data.column(‘$geometry’)}
    fill={data.map(year, someScale)}
   />
  </Section>
 {/each}

</Grid>

Similar logic can also be applied to create, for example, 
atlas-like functionality, in which a map is created for each 
province in a dataset.

One approach somewhat unique to cartography is the vi-
sualization of multi-dimensional spatial datasets through 
small pie charts or other such “micro diagrams” (Gröbe 
and Burghardt 2020) that are displayed at specific loca-
tions on a map to visualize some additional information 
about that specific location. Depending on the complexity 

of the type of diagram, these can be challenging to im-
plement with web mapping software. However, with the 
grammar-of-graphics approach, we can think of each 
micro diagram as an individual Section (with its own co-
ordinate system) that we can simply position at the right 
geographic coordinates. An example of this, replicating 
Mathieu Rajerison’s approach (Rajerison 2020) for “map 
sparklines” can be seen in Figure 10.

T E AC H I N G  W I T H  F LO R E N C E
In the spring of 2020, we used the framework as a core 
library to teach an introductory course in interactive data 
visualization at the Singapore University of Technology 
and Design. The course had no specific prerequisites and 
attracted students from a wide variety of backgrounds. 
Most students had no significant programming experience 
and only three students had worked with HTML before. 
None had prior training in cartography. We include a 
short discussion of our experience teaching with Florence 

here as an initial pilot study of the potential effectiveness 
of our approach, pending a more formal and systematic as-
sessment (see Discussion & Future Work).

The first half of the course built a foundational understand-
ing of HTML/JS/CSS and the Svelte reactive framework, 
by recreating charts produced by Du Bois and his col-
leagues for the 1900 Paris Exhibition (Battle-Baptiste and 
Rusert 2018) using each of those technologies. The second 

Figure 10. “Map sparklines” as an example of micro diagrams. 
Used here to show the evolution of COVID-19 cases in different 
Dutch provinces in an animated manner. Code and interactive 
version available at florence.spatialnetworkslab.org/examples/
cp-figure10.

https://florence.spatialnetworkslab.org/examples/cp-figure10
https://florence.spatialnetworkslab.org/examples/cp-figure10


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 45 

half of the course introduced the grammar of graphics and 
its implementation with the Florence framework. Students 
then created a series of visualization dashboards and in-
teractive maps during class exercises, while simultaneously 
working on an independent project.

The main challenge for students in the course was to learn 
the foundational computing concepts within HTML/JS/
CSS, as well as the Svelte framework. After that, pick-
ing up the grammar of graphics, and by extension the 
Florence library, seemed natural to students. From a ped-
agogical point of view, it is interesting to note that many 
students did not fully realize that they were actually using 
an external software library. Rather, they were just writing 
JavaScript based on the core concepts from the grammar 
of graphics, such as marks and scales.

As highlighted before, Florence serves as a convenience 
layer on top of core web technologies. This enabled stu-
dents to branch out creatively in their f inal projects, 
combining and linking different visual ways to analyse 
and present their data, using everything from maps and 
graphs to regular UI elements such as form elements and 

text (DG5, DG6). In some cases, students built relatively 
bespoke and complex web applications, in which the use 
of Florence was observed to be helpful in easing the path 
to linking to “low-level” approaches, which can otherwise 
be challenging to achieve with libraries that provide more 
out-of-the-box, “one-click” solutions (DG3, DG4).

Importantly, Florence’s easy interoperability with other 
libraries (DG7) allowed student projects to merge the 
grammar-of-graphics foundation taught in the class with 
libraries such as d3-force to display network data and map-
box-gl to display a pannable basemap under a Florence vi-
sualization. This was also useful for students who came to 
the course with the expectation of learning D3 or some 
other existing library and were initially disappointed to 
learn Florence instead. The foundation of the grammar 
of graphics allowed them to quickly adopt other libraries 
and approaches in their final projects. While the library in 
its current state is not without its limitations, we are en-
couraged by this initial use case, which shows clear prom-
ise as a teaching tool for web-based cartography and data 
visualization.

D I S C U S S I O N  &  F U T U R E  WO R K
With a flexible combination of the core compo-
nents discussed here, many (spatial) visualizations can 
be created. Importantly, once the grammar-of-graph-
ics approach is adopted, a user can employ the concepts 
to “think through” a visualization, breaking it down in 
its constituent marks and scales even before starting the 
actual coding process. In our experience teaching with 
Florence, the easy transition from HTML to the use of 
Svelte and Florence—as well as the declarative approach 
to writing visualizations—works well for students that do 
not come from a software engineering background. By 
design, Florence does not have much embedded “magic” 
and, in some cases, requires relatively verbose code (DG4). 
We argue that this should not be seen as a downside as 
it leads to greater understanding and easier customization 
and adaptation in student projects.

The modular, component-based approach aids in this flex-
ibility as well. Although the framework only provides a 
limited set of primitive marks, they can be easily expand-
ed (DG3, DG7). For example, a box plot is an example 
of a visual element that is not a single mark but rather a 

collection of different marks that indicate the different 
quartiles and outliers. This collection of marks can be 
turned into its own higher-level “boxplot” component and 
can subsequently be re-used across a project and shared 
with other users or projects. In this way, higher-order lay-
ers can be created—to the point of entire pre-defined maps 
that can serve as templates. As an example, the sparklines 
seen in Figure 10 can be saved as a component as well—
allowing the user to create one for any country by passing 
a reference, via the component properties, to a GeoJSON 
file for the spatial polygons as well as a table of x/y data for 
the actual sparklines.

Although our initial use of the library in teaching showed 
promise, a more thorough evaluation in an educational 
context is warranted. Such an evaluation could take two 
specific approaches. First, the extent to which the design 
goals are achieved, and the library’s impact on a student’s 
learning of web-based cartography skills and concepts can 
be formally assessed in subsequent iterations of the course. 
Roth and Sack’s (2017) methodology provides a clear and 
structured evaluation approach for this purpose through 



Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 46 

employing instructor observation logs, student feedback 
compositions, and exit surveys. However, by its very na-
ture, such an approach evaluates the library only in the 
context of the course in which it is used.

To provide a more direct comparison to other commonly 
used libraries in web mapping (e.g., D3, Leaflet), a sur-
vey with an experimental design could be conducted with 
cartography practitioners that have a working understand-
ing of web technology but might use varying tools in their 
day-to-day practice. A few common mapping scenarios 
could be implemented, supplemented with small lessons, 
across different technologies to measure the effectiveness 
of those technologies in relation to the aforementioned de-
sign goals. Since both the research population and likely 
sample size will be small, such a survey could be combined 
with qualitative exit interviews as well.

There are some obvious limitations in the implementa-
tion of the first version of the library as well. For exam-
ple, currently Florence only supports rendering in SVG. 
However, its rendering backend is written to allow for 
different rendering approaches. For larger datasets, SVG 
has certain limitations. In future work, we would like to 
explore expansion to both HTML canvas and WebGL 
rendering. The latter is an especially promising technol-
ogy for creating geovisualizations of very large datasets. 
Although some more general WebGL visualization li-
braries exist (Ren, Lee, and Höllerer 2017), to the best of 

our knowledge no convenient approach currently exists for 
creative cartography with WebGL.

Similarly, it would be fruitful to build on our current 
implementation of interactions to provide a higher-level 
“grammar” of interactions (cf. Roth 2013). In relation to 
this, Florence currently does allow for a basic set of transi-
tions and animations, including tweening. Animation has 
been a long standing interest in cartography (Karl 1992; 
Lobben 2003), but recent work has called for caution 
around the use of animation to facilitate change detec-
tion in choropleth maps (Fish, Goldsberry, and Battersby 
2011). We believe extending the grammar to interactions 
and animations (cf. the R library gganimate; gganimate.
com), and thus easing its use, will enable a wider variety 
of use cases for animation in web mapping, beyond the 
common case of mapping temporal change to frames in an 
animation.

In evaluating its approach and current capabilities, we put 
Florence forward as an example of software designed for 
web-based data visualization that is speaking directly to 
the discipline of cartography, and cartography education 
in particular. We are optimistic that such approaches and 
a concerted effort around developing software for cartog-
raphy have the potential to not only open up new ways of 
creative mapmaking but also help address the significant 
challenges in teaching web-based mapping in our cartog-
raphy curricula.

DATA  &  CO D E  AVA I L A B I L I T Y
The source code repository for the software can be found on Gitlab: gitlab.com/spatialnetworkslab/florence. A 
deeper treatment, including documentation and more elaborate examples, can be found at the documentation website: 
florence.spatialnetworkslab.org.

F U N D I N G  D E TA I L S
This work was supported by the Singapore Ministry of Education Tertiary Education Research Fund, under Grant 
3 TR 20.

https://gganimate.com/
https://gganimate.com/
https://gitlab.com/spatialnetworkslab/florence
https://florence.spatialnetworkslab.org/


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 47 

R E FE R E N C ES
Anselin, Luc, Yong Wook Kim, and Ibnu Syabri. 2004. 

“Web-Based Analytical Tools for the Exploration of 
Spatial Data.” Journal of Geographical Systems 6 (2): 
197–218. https://doi.org/10.1007/s10109-004-0132-5.

Battersby, Sarah E., Michael P. Finn, E. Lynn Usery, 
and Kristina H. Yamamoto. 2014. “Implications 
of Web Mercator and Its Use in Online Mapping.” 
Cartographica 49 (2): 85–101. https://doi.org/10.3138/
carto.49.2.2313.

Battle-Baptiste, Whitney, and Britt Rusert, eds. 2018. 
W. E. B. Du Bois’s Data Portraits: Visualizing Black 
America. Amherst, MA: Princeton Architectural Press.

Bertin, Jacques. 2010. Semiology of Graphics: Diagrams, 
Networks, Maps. Redlands, CA: Esri Press.

Boettiger, Carl, Scott Chamberlain, Edmund Hart, and 
Karthik Ram. 2015. “Building Software, Building 
Community: Lessons from the ROpenSci Project.” 
Journal of Open Research Software 3 (1): e8. http://doi.
org/10.5334/jors.bu.

Bostock, Michael, and Jeffrey Heer. 2009. “Protovis: 
A Graphical Toolkit for Visualization.” IEEE 
Transactions on Visualization and Computer Graphics 
15 (6): 1121–1128. https://doi.org/10.1109/
TVCG.2009.174.

Bostock, Michael, Vadim Ogievetsky, and Jeffrey 
Heer. 2011. “D3 Data-Driven Documents.” IEEE 
Transactions on Visualization and Computer Graphics 
17 (12): 2301–2309. https://doi.org/10.1109/
TVCG.2011.185.

Chang, Winston, Joe Cheng, J. Allaire, Yihui Xie, and 
Jonathan McPherson. 2019. “Shiny: Web Application 
Framework for R.” R Package Version 1 (5). https://
cran.r-project.org/package=shiny.

Crampton, Jeremy W. 2010. Mapping: A Critical 
Introduction to Cartography and GIS, 1st Edition. 
Malden, MA: Wiley-Blackwell.

Degbelo, Auriol, Saad Sarfraz, and Christian Kray. 
2020. “Data Scale as Cartography: A Semi-Automatic 
Approach for Thematic Web Map Creation.” 
Cartography and Geographic Information Science 47 (2): 
153–170. https://doi.org/10.1080/15230406.2019.167
7176.

Dent, Borden D. 2009. Cartography: Thematic Map 
Design. New York: McGraw-Hill Higher Education.

Fabrikant, Sara Irina, Cedric Gabathuler, and André 
Skupin. 2015. “SOMViz: Web-Based Self-Organizing 
Maps.” KN - Journal of Cartography and Geographic 
Information 65 (2): 81–91. https://doi.org/10.1007/
BF03545092.

Fish, Carolyn, Kirk P. Goldsberry, and Sarah Battersby. 
2011. “Change Blindness in Animated Choropleth 
Maps: An Empirical Study.” Cartography and 
Geographic Information Science 38 (4): 350–362. https://
doi.org/10.1559/15230406384350.

Gahegan, Mark. 2018. “Our GIS Is Too Small.” The 
Canadian Geographer 62 (1): 15–26. https://doi.
org/10.1111/cag.12434.

Gahegan, Mark, Masahiro Takatsuka, Mike Wheeler, 
and Frank Hardisty. 2002. “Introducing GeoVISTA 
Studio: An Integrated Suite of Visualization and 
Computational Methods for Exploration and 
Knowledge Construction in Geography.” Computers, 
Environment and Urban Systems 26 (4): 267–92. https://
doi.org/10.1016/S0198-9715(01)00046-1.

Griffin, Amy L., Anthony C. Robinson, and Robert E. 
Roth. 2017. “Envisioning the Future of Cartographic 
Research.” International Journal of Cartography 3 (sup1): 
1–8. https://doi.org/10.1080/23729333.2017.1316466.

Gröbe, Mathias, and Dirk Burghardt. 2020. “Micro 
Diagrams: Visualization of Categorical Point Data 
from Location-Based Social Media.” Cartography and 
Geographic Information Science 47 (4): 305–320. https://
doi.org/10.1080/15230406.2020.1733438.

https://doi.org/10.1007/s10109-004-0132-5
https://doi.org/10.3138/carto.49.2.2313
https://doi.org/10.3138/carto.49.2.2313
http://doi.org/10.5334/jors.bu
http://doi.org/10.5334/jors.bu
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=shiny
https://doi.org/10.1080/15230406.2019.1677176
https://doi.org/10.1080/15230406.2019.1677176
https://doi.org/10.1007/BF03545092
https://doi.org/10.1007/BF03545092
https://doi.org/10.1559/15230406384350
https://doi.org/10.1559/15230406384350
https://doi.org/10.1111/cag.12434
https://doi.org/10.1111/cag.12434
https://doi.org/10.1016/S0198-9715(01)00046-1
https://doi.org/10.1016/S0198-9715(01)00046-1
https://doi.org/10.1080/23729333.2017.1316466
https://doi.org/10.1080/15230406.2020.1733438
https://doi.org/10.1080/15230406.2020.1733438


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 48 

Hardisty, Frank, and Anthony C. Robinson. 2011. 
“The Geoviz Toolkit: Using Component-Oriented 
Coordination Methods for Geographic Visualization 
and Analysis.” International Journal of Geographical 
Information Science 25 (2): 191–210. https://doi.
org/10.1080/13658810903214203.

Harris, Richard, David O’Sullivan, Mark Gahegan, 
Martin Charlton, Lex Comber, Paul Longley, Chris 
Brunsdon, Nick Malleson, Alison Heppenstall, 
Alex Singleton, et al. 2017. “More Bark than Bytes? 
Reflections on 21+ Years of Geocomputation.” 
Environment and Planning B: Urban Analytics 
and City Science 44 (4): 598–617. https://doi.
org/10.1177/2399808317710132.

Harvey, Francis. 2019. “Jacques Bertin’s Legacy and 
Continuing Impact for Cartography.” Cartography and 
Geographic Information Science 46 (2): 97–99. https://
doi.org/10.1080/15230406.2019.1533784.

Heer, Jeffrey, and Michael Bostock. 2010. “Declarative 
Language Design for Interactive Visualization.” 
IEEE Transactions on Visualization and Computer 
Graphics 16 (6): 1149–1156. https://doi.org/10.1109/
TVCG.2010.144.

Kahle, David, and Hadley Wickham. 2013. “ggmap: 
Spatial Visualization with ggplot2.” The R Journal 5 (1): 
144–161.

Karl, Doris. 1992. “Cartographic Animation: Potential 
and Research Issues.” Cartographic Perspectives 13: 3–9. 
https://doi.org/10.14714/CP13.999.

Kraak, Menno-Jan, and Ferjan Ormeling. 2011. 
Cartography, Third Edition: Visualization of Spatial 
Data. New York: Guilford Press.

Ledermann, Florian, and Georg Gartner. 2015. 
“mapmap.js: A Data-Driven Web Mapping API for 
Thematic Cartography” Revista Brasileira de Cartografia 
67 (5): 1043–1054. http://www.seer.ufu.br/index.php/
revistabrasileiracartografia/article/view/44626.

Liu, Zhicheng, John Thompson, Alan Wilson, Mira 
Dontcheva, James Delorey, Sam Grigg, Bernard Kerr, 
and John Stasko. 2018. “Data Illustrator: Augmenting 
Vector Design Tools with Lazy Data Binding for 
Expressive Visualization Authoring.” In Proceedings 
of the 2018 CHI Conference on Human Factors in 
Computing Systems, 1–13. New York: ACM Press. 
https://doi.org/10.1145/3173574.3173697.

Lobben, Amy. 2003. “Classification and Application of 
Cartographic Animation.” The Professional Geographer 
55 (3): 318–328. https://www.tandfonline.com/doi/
abs/10.1111/0033-0124.5503016.

MacEachren, Alan M. 2004. How Maps Work: 
Representation, Visualization, and Design. New York: 
Guilford Press.

———. 2013. “Cartography as an Academic Field: 
A Lost Opportunity or a New Beginning?” The 
Cartographic Journal 50 (2): 166–170. https://doi.org/10
.1179/0008704113Z.00000000083.

Muehlenhaus, Ian. 2014. “Going Viral: The Look of 
Online Persuasive Maps.” Cartographica 49 (1): 18–34. 
https://doi.org/10.3138/carto.49.1.1830.

Munzner, Tamara. 2014. Visualization Analysis and 
Design. Boca Raton, FL: CRC Press.

Nagel, Till, Joris Klerkx, Andrew Vande Moere, and 
Erik Duval. 2013. “Unfolding – A Library for 
Interactive Maps.” In Human Factors in Computing 
and Informatics, edited by Andreas Holzinger, 
Martina Ziefle, Martin Hitz, and Matjaž Debevc, 
497–513. Berlin, Heidelberg: Springer. https://doi.
org/10.1007/978-3-642-39062-3_31.

Nost, Eric, Heather Rosenfeld, Kristen Vincent, Sarah A. 
Moore, and Robert E. Roth. 2017. “HazMatMapper: 
An Online and Interactive Geographic Visualization 
Tool for Exploring Transnational Flows of Hazardous 
Waste and Environmental Justice.” Journal of Maps 13 
(1): 14–23. https://doi.org/10.1080/17445647.2017.12
82384.

https://doi.org/10.1080/13658810903214203
https://doi.org/10.1080/13658810903214203
https://doi.org/10.1177/2399808317710132
https://doi.org/10.1177/2399808317710132
https://doi.org/10.1080/15230406.2019.1533784
https://doi.org/10.1080/15230406.2019.1533784
https://doi.org/10.1109/TVCG.2010.144
https://doi.org/10.1109/TVCG.2010.144
https://doi.org/10.14714/CP13.999
http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/44626
http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/44626
https://doi.org/10.1145/3173574.3173697
https://www.tandfonline.com/doi/abs/10.1111/0033-0124.5503016
https://www.tandfonline.com/doi/abs/10.1111/0033-0124.5503016
https://doi.org/10.1179/0008704113Z.00000000083
https://doi.org/10.1179/0008704113Z.00000000083
https://doi.org/10.3138/carto.49.1.1830
https://doi.org/10.1007/978-3-642-39062-3_31
https://doi.org/10.1007/978-3-642-39062-3_31
https://doi.org/10.1080/17445647.2017.1282384
https://doi.org/10.1080/17445647.2017.1282384


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 49 

Pezanowski, Scott, Alan M. MacEachren, Alexander 
Savelyev, and Anthony C. Robinson. 2018. 
“SensePlace3: A Geovisual Framework to Analyze 
Place–Time–Attribute Information in Social Media.” 
Cartography and Geographic Information Science 45 (5): 
420–437. https://doi.org/10.1080/15230406.2017.13
70391.

Poorthuis, Ate, and Matthew Zook. 2020. “Being 
Smarter about Space: Drawing Lessons from 
Spatial Science.” Annals of the American Association of 
Geographers 110 (2): 349–359. https://doi.org/10.1080/
24694452.2019.1674630.

Rajerison, Mathieu. 2020. “A Sparkline Map of COVID-
19 (Or any Name you’ll Prefer).” Billet. Datagistips. 
2020. https://datagistips.hypotheses.org/488.

Ren, Donghao, Bongshin Lee, and Tobias Höllerer. 
2017. “Stardust: Accessible and Transparent GPU 
Support for Information Visualization Rendering.” 
Computer Graphics Forum 36 (3): 179–188. https://doi.
org/10.1111/cgf.13178.

Ricker, Britta, and Jim Thatcher. 2017. “Evolving 
Technology, Shifting Expectations: Cultivating 
Pedagogy for a Rapidly Changing GIS Landscape.” 
Journal of Geography in Higher Education 41 (3): 368–
382. https://doi.org/10.1080/03098265.2017.1315533.

Robinson, Anthony C. 2019. “Elements of Viral 
Cartography.” Cartography and Geographic Information 
Science 46 (4): 293–310. https://doi.org/10.1080/15230
406.2018.1484304.

Roth, Robert E. 2013. “An Empirically-Derived 
Taxonomy of Interaction Primitives for Interactive 
Cartography and Geovisualization.” IEEE Transactions 
on Visualization and Computer Graphics 19 (12): 2356–
2365. https://doi.org/10.1109/TVCG.2013.130.

———. 2017. “User Interface and User Experience 
(UI/UX) Design.” Geographic Information Science 
& Technology Body of Knowledge. https://doi.
org/10.22224/gistbok/2017.2.5.

Roth, Robert E., Richard G. Donohue, Carl M. Sack, 
Timothy R. Wallace, and Tanya M. A. Buckingham. 
2014. “A Process for Keeping Pace with Evolving Web 
Mapping Technologies.” Cartographic Perspectives 78: 
25–52. https://doi.org/10.14714/CP78.1273.

Roth, Robert E., and Alan M. MacEachren. 2016. 
“Geovisual Analytics and the Science of Interaction: 
An Empirical Interaction Study.” Cartography and 
Geographic Information Science 43 (1): 30–54. https://
doi.org/10.1080/15230406.2015.1021714.

Roth, Robert E., Kevin S. Ross, and Alan M. 
MacEachren. 2015. “User-Centered Design for 
Interactive Maps: A Case Study in Crime Analysis.” 
ISPRS International Journal of Geo-Information 4 (1): 
262–301. https://doi.org/10.3390/ijgi4010262.

Sack, Carl M. 2018. “The Status of Web Mapping in 
North American Higher Education.” Cartographic 
Perspectives 89: 25–43. https://doi.org/10.14714/
CP89.1429.

Sack, Carl M., and Robert E. Roth. 2017. “Design and 
Evaluation of an Open Web Platform Cartography 
Lab Curriculum.” Journal of Geography in Higher 
Education 41 (1): 1–23. https://doi.org/10.1080/03098
265.2016.1241987.

Satyanarayan, Arvind, Dominik Moritz, Kanit 
Wongsuphasawat, and Jeffrey Heer. 2017. “Vega-
Lite: A Grammar of Interactive Graphics.” 
IEEE Transactions on Visualization and Computer 
Graphics 23 (1): 341–350. https://doi.org/10.1109/
TVCG.2016.2599030.

Satyanarayan, Arvind, Ryan Russell, Jane Hoffswell, 
and Jeffrey Heer. 2016. “Reactive Vega: A Streaming 
Dataflow Architecture for Declarative Interactive 
Visualization.” IEEE Transactions on Visualization 
and Computer Graphics 22 (1): 659–668. https://doi.
org/10.1109/TVCG.2015.2467091.

Šavrič, Bojan, Bernhard Jenny, and Helen Jenny. 2016. 
“Projection Wizard – An Online Map Projection 
Selection Tool.” The Cartographic Journal 53 (2): 177–
185. https://doi.org/10.1080/00087041.2015.1131938.

https://doi.org/10.1080/15230406.2017.1370391
https://doi.org/10.1080/15230406.2017.1370391
https://doi.org/10.1080/24694452.2019.1674630
https://doi.org/10.1080/24694452.2019.1674630
https://datagistips.hypotheses.org/488
https://doi.org/10.1111/cgf.13178
https://doi.org/10.1111/cgf.13178
https://doi.org/10.1080/03098265.2017.1315533
https://doi.org/10.1080/15230406.2018.1484304
https://doi.org/10.1080/15230406.2018.1484304
https://doi.org/10.1109/TVCG.2013.130
https://doi.org/10.22224/gistbok/2017.2.5
https://doi.org/10.22224/gistbok/2017.2.5
https://doi.org/10.14714/CP78.1273
https://doi.org/10.1080/15230406.2015.1021714
https://doi.org/10.1080/15230406.2015.1021714
https://doi.org/10.3390/ijgi4010262
https://doi.org/10.14714/CP89.1429
https://doi.org/10.14714/CP89.1429
https://doi.org/10.1080/03098265.2016.1241987
https://doi.org/10.1080/03098265.2016.1241987
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1080/00087041.2015.1131938


Cartographic Perspectives, Number 96 Florence – Poorthuis et al. | 50 

Shannon, Jerry, and Kyle E. Walker. 2020. “Ventures 
into Viral Cartography: Waffle House, Educational 
Attainment, and the Social Life of Maps.” The 
Professional Geographer 72 (1): 66–77. https://doi.org/10
.1080/00330124.2019.1653774.

Slocum, Terry A., Robert B. McMaster, Fritz C. Kessler, 
and Hugh H. Howard. 2009. Thematic Cartography and 
Geovisualization, Third Edition. Upper Saddle River, 
NJ: Pearson Prentice Hall.

Tennekes, Martijn. 2018. “Tmap: Thematic Maps in R.” 
Journal of Statistical Software 84 (1): 1–39. https://doi.
org/10.18637/jss.v084.i06.

Tobler, Waldo R. 1959. “Automation and Cartography.” 
Geographical Review 49 (4): 526–534. https://doi.
org/10.2307/212211.

Wickham, Hadley. 2010. “A Layered Grammar of 
Graphics.” Journal of Computational and Graphical 
Statistics 19 (1): 3–28. https://doi.org/10.1198/
jcgs.2009.07098.

Wickham, Hadley, Mara Averick, Jennifer Bryan, 
Winston Chang, Lucy McGowan, Romain François, 
Garrett Grolemund, Alex Hayes, Lionel Henry, Jim 
Hester, et al. 2019. “Welcome to the Tidyverse.” 
Journal of Open Source Software 4 (43): 1686. https://
doi.org/10.21105/joss.01686.

Wickham, Hadley, Romain Francois, Lionel Henry, 
and Kirill Müller. 2015. “Dplyr: A Grammar of Data 
Manipulation.” R Package Version 0.4 3. https://cran.r-
project.org/package=dplyr.

Wilkinson, Leland. 2013. The Grammar of Graphics. 
Berlin: Springer Berlin Heidelberg.

https://doi.org/10.1080/00330124.2019.1653774
https://doi.org/10.1080/00330124.2019.1653774
https://doi.org/10.18637/jss.v084.i06
https://doi.org/10.18637/jss.v084.i06
https://doi.org/10.2307/212211
https://doi.org/10.2307/212211
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr



