
Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 61

© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0.

DOI: 10.14714/CP96.1669

Charles Preppernau (he/him)
Esri

Email: geolographer.xyz/contactform

PRACT ICAL CARTOGRAPHER'S CORNER

Normalizing the Normal Map

I N T R O D U C T I O N
Before becoming a cartographer, I made 3D
graphics and animations. My favorite projects were those
where I had to achieve my goals by using the tools available
to me in ways that were very different from their intended
purpose. As a cartographer, I’ve continued borrowing and
“misusing” tools from computer graphics, especially the
normal map. The more I use normal maps in cartography,
the more I feel that they should be considered a common
tool in both cartographic representation and GIS analy-
ses. Unfortunately, up until recently there has been little
mention of them in cartographic communities or scientific
literature. I’d like to help popularize their misuse.

Readers may already be familiar with the aspect-slope
map (Figure 1), which represents surface orientation using
two angular measurements. A normal map is the linear
coordinate version of an aspect-slope map; it represents
surface orientation using a type of 3D vector called a sur-
face normal.

This article will go into the specifics of what a normal
map is, how to make one, and some ways to use them in
cartography.

Figure 1. Two methods for displaying surface orientation. Left: an aspect-slope map. Right: a normal map.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 62

W H AT I S A N O R M A L M A P ?
Pick a point on a surface. Imagine a line originating
from this point that is one unit long and perpendicular—
or normal—to the surface. This line is a vector called a
surface normal. A normal map is a raster where the cells
represent the normals of a surface.

Vectors have two main properties that will be important
for the remainder of this discussion:

• They have a length (also called magnitude) and a
direction. In the case of surface normals, the direction
is also the direction that the surface faces.

• They have a component for each of their dimensions.
A 3D vector like a surface normal has three compo-
nents: x, y, and z. These components are the distances
traversed by the vector along each axis of the coordi-
nate system it is drawn in (Figure 2).

The components of a vector are related to its length by:

 (Equation 1)

A normal has a length of one, making it a unit vector.
Values for unit vector components have a range of (-1.0,
1.0), and if one component is close to 1.0 or -1.0, the other
components will be close to 0. This known range of values
makes it easy to remap the components to the range (0,
255) used for RGB color channels:

Usually, x is assigned to red, y to green, and z to blue.
So, for a level surface, the normal vector would be (0, 0,
1.0) and the corresponding color is RGB(128, 128, 255)
or #8080FF. This is the blue color predominant in many
normal maps.

Figure 2. A 3D surface generated from an elevation raster. Each vertex represents the center of a raster cell, and the normals are drawn
from these vertices, perpendicular to the average surface around them. Inset: the distances traveled along each axis by the normal are its
components. This one travels a little bit to the east (positive x), a bit more to the north (positive y), and mostly upward (positive z).

(Equation 2)

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 63

C R E AT I N G A N O R M A L M A P
Normal maps and the tools used to make them are
ubiquitous in graphics apps, but for best results, I recom-
mend creating and working with them in a GIS or with
a scripting language like Python. Most of this article as-
sumes that you are using a GIS or coding environment to
work with normal maps.

USING GRAPHICS SOFTWARE

Most graphics apps have a function for generating normal
maps from grayscale height maps. Those that don’t will
usually have normal map plugins available. Graphics apps
often disagree on whether y or z is the vertical axis, and on
which direction is positive along each axis. Assuming your
map is oriented with north at the top of the page, the con-
vention I will use for this article is: +x = east, +y = north,
and +z = up. If your app does not follow this convention,
or you prefer another, you can reorder or invert the color
bands (or channels) until they meet your needs.

Some apps have options for generating normal maps in
world, object, and tangent space, but these should all be
the same for a geospatial elevation map. If not, tangent
or world space should be the safest options. If the normal
map looks bluish in flat areas, reddish on east slopes, and
greenish on north slopes (as in Figure 1), it is similar to
those described in this article.

USING A GIS OR PYTHON

Many of the uses for normal maps that I’ll discuss later
require the ability to perform mathematical operations on
rasters. I recommend using a GIS or a programming lan-
guage like Python to produce and work with normal maps
because they make these operations much easier and fast-
er. My two preferred methods for creating a normal map
are discussed below.

Option 1: Compute the Components Using
Aspect and Slope

Conceptually, the simplest way to make a normal map in
a GIS without a specific tool is to first make a slope raster
and an aspect raster from your elevation map. Since a nor-
mal map is the vector form of the aspect-slope map, it can
be obtained by the conversion of these angles to a vector:

x = sin(aspect) × sin(slope) (Equation 3)
y = cos(aspect) × sin(slope) (Equation 4)
z = cos(slope) (Equation 5)

Once the components are calculated, compositing these
raster bands will yield the normal map:

n = (x, y, z) (Equation 6)

Option 2: Compute the Components Using
Elevation Gradients

This method is the same one used in Pyramid Shader
(terraincartography .com/PyramidShader). It is more di-
rect and probably generates smaller errors than Option 1:

1. To get the x component, subtract the value of
the cell’s right neighbor from the value of its left
neighbor. Do the same for the top and bottom
neighbors to get the y component. These are
elevation gradients (change in elevation, or “rise”)
along the x and y axes.

2. The z component for every cell is initially the
raster’s cell width plus its cell height. It might
seem counterintuitive to use a constant obtained
from horizontal distances as the vertical compo-
nent, but it may be helpful to think of this as the
“run” and x and y as the “rise.” With both normals
and linear functions, zero rise and a nonzero run
indicate a level surface or line, while a high rise
with the same run indicates a steep surface or line.

With all three components, the vectors have the
correct direction, but the magnitude will vary
from cell to cell. It needs to be 1.0 for all cells.

3. Get the magnitudes of the vectors. Use Equation
1:

4. Divide each component by the magnitudes to
make the vector a unit vector. Note that the value
of z will now be small if the value of x or y was
large. Or, if it was the only nonzero component,
i.e., the surface was level, z will now be 1.0, and
the vector will be (0, 0, 1.0).

http://terraincartography.com/PyramidShader

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 64

5. Write x, y, and z to the red, green, and blue
bands of a raster, respectively.

While this workf low should be doable using the raster
tools in most GIS packages, it is best suited for Python
or any other programming language. An implementation
with NumPy and ArcPy might look like Example 1.

The syntax H[a:b, c:d] is a way to get a copy of the array
as if the array was shifted one cell in a given direction.
This allows you to make four additional arrays containing

the original array’s left, right, top, and bottom neighbors
for each cell, and then subtract those arrays from each
other.

PROPERTIES OF A NORMAL MAP

If the normal map is split into its component bands (Figure
3), the bands appear similar to three perpendicular hill-
shades lit from the positive direction of their respective
axes; east, north, and directly above. This is a useful point
that I’ll come back to when I talk about soft hillshading.

Example 1.

import numpy as np
import arcpy

def NormalMap(H, cX, cY):

 # Pad the raster by 1 cell to help deal with raster edges; will be undone in next steps.
 H = np.pad(H, 1, 'edge')

 # x component = left neighbor - right neighbor (also trims width by 1 cell)
 X = (H[1:-1, 0:-2] - H[1:-1, 2:])

 # y component = bottom neighbor - top neighbor (also trims height by 1 cell)
 Y = (H[2:, 1:-1] - H[0:-2, 1:-1])

 # z component = cell width + cell height
 Z = np.ones(X.shape, dtype='float32')
 Z *= cX + cY

 # Get the magnitudes of the 3D vectors
 M = np.sqrt((X ** 2) + (Y ** 2) + (Z ** 2))

 # Divide each component by the magnitude, then stack them into a 3D array
 N = np.stack((X / M, Y / M, Z / M), 2)

 # Make the band the first axis; output axes will be (band, row, column)
 N = np.moveaxis(N, 2, 0)

 return N

def NumpyToRGB(array, corner, cX, cY, srs, destination):

 compX = arcpy.NumPyArrayToRaster(array[0], corner, cX, cY)
 arcpy.DefineProjection_management(compX, srs)

 compY = arcpy.NumPyArrayToRaster(array [1], corner, cX, cY)
 arcpy.DefineProjection_management(compY, srs)

 compZ = arcpy.NumPyArrayToRaster(array [2], corner, cX, cY)
 arcpy.DefineProjection_management(compZ, srs)

 finalComp = arcpy.CompositeBands_management([compX, compY, compZ], destination)
 arcpy.DefineProjection_management(finalComp, srs)

elevationRaster = arcpy.Raster(inputPath)

cX = elevationRaster.meanCellWidth
cY = elevationRaster.meanCellHeight
srs = elevationRaster.spatialReference
corner = arcpy.Point(elevationRaster.extent.XMin, elevationRaster.extent.YMin)

ElevationArray = arcpy.RasterToNumPyArray(elevationRaster)
NormalArray = NormalMap(ElevationArray, cX, cY)
NumpyToRGB(NormalArray, corner, cX, cY, srs, outputPath)

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 65

The blue color of the most common variant of normal
maps is due to the behavior of the z, or blue band. The
z-band is usually close to or equal to 1.0 because nearly
level ground is more common than slopes, and it is always
greater than 0 because these rasters cannot show verti-
cal cliffs or overhanging surfaces. Meanwhile, the x and
y bands can be positive or negative, are usually close to
0, and their absolute values are always less than 1.0. Each
color on the normal map represents a different orientation.
Unlike an aspect raster, it is always the case that the clos-
er the colors (or components) of two normals are to each
other, the more similar are their orientations.

APPLICATIONS FOR NORMAL MAPS
Normal maps are seen most commonly in inter-
active 3D graphics, where rendering times are of high
importance. Typically, a high-resolution mesh is used to
create a normal map, which is draped or wrapped onto a
simplified version of the mesh in a manner similar to a
texture. The renderer reads the values of the normal map
instead of the actual surface normals of the mesh when
performing lighting calculations (Figure 4). Having a
low-density mesh that responds to light like a high-den-
sity mesh greatly improves rendering time with minimal
impact on quality.

This works because the two most important factors for
modeling the interaction of light with a surface are: the
orientation of incoming light rays, and the orientation (or
normal) of the reflecting surface.

This is also true for cartographic relief representation;
in many cases elevation rasters are an abstraction of the

information we use for terrain shading. Now I’ll discuss
some benefits of working directly with normal maps in
cartography, starting with basic hillshading.

SOFT HILLSHADING

A common hillshading technique is based on a model of
light diffusion described by Lambert (1760), and is called
Lambert shading. It uses the following procedure:

1. Compute the surface normal at each cell of an
elevation raster.

Figure 3. A normal map and its three component bands. For each
band, white is equal to 1.0, medium gray to 0, and black to -1.0.

Figure 4. A dense mesh (left) may not draw fast enough for an interactive display, while a simplified version (center) may draw quickly but
lack the desired detail. A normal map generated from the full-resolution mesh can be used to override the simplified geometry’s normals
during shading (right), giving the benefits of both.

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 66

2. Take the dot product between that normal and the
direction of the light source. This produces a raster
with values between -1.0 and 1.0.

3. Set all negative values to zero and multiply all val-
ues by the output format’s value for white (in the
case of an 8-bit raster, this is usually 255).

Previously I mentioned that the individual bands of a nor-
mal map are similar to hillshades lit from their respective
axes. This seems a bit of a stretch if we compare the two
(Figure 5), but it turns out that if the Lambert method
stopped before step 3, they would be identical. That final
step essentially took everything equal to or darker than
medium gray in the right image and clipped it to black,
adjusting the contrast accordingly. This included the level
surfaces, which were perpendicular to the light vector.

Even with standard lighting, it is common for a cartogra-
pher to reduce contrast or add transparency to a Lambert
hillshade. Since this work essentially undoes the last step
of the Lambert method, and since the low clip on negative
values isn’t reversible, it makes more sense to perform the

shading yourself and skip step 3. If it turns out that the
contrast or clip are necessary, you can apply them yourself.

Step 1 is complete upon the creation of a normal map. For
step 2, you’ll calculate the dot product between the normal
map and a constant unit vector representing the lighting
direction. Not all apps have a dot product function out of
the box, but you can compute it by multiplying the respec-
tive components of the two vectors together, then sum-
ming the results:

n ∙ l = nxlx + nyly + nzlz (Equation 7)

Using a single cell of a terrain surface with a westward
slope of 36.87° as an example, the normal for that cell
would be (-0.6, 0, 0.8). Typical hillshade lighting, from a
315° azimuth and elevated by 45°, corresponds to the vec-
tor (-0.5, 0.5, 0.71).

n = (-0.6, 0, 0.8)
l = (-0.5, 0.5, 0.71)
n ∙ l = (-0.6 × -0.5) + (0 × 0.5) + (0.8 × 0.71)
 = 0.87 (light gray on a scale from -1.0 to 1.0)

Figure 5. Left: A Lambert hillshade lit from the eastern horizon. Right: The normal map’s x-band, or the same Lambert hillshade before the
final step of the algorithm was performed.

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 67

Figure 6 shows an example of this
method, which I refer to as soft
hillshading, and illustrates the re-
lationship between surface orien-
tation, lighting angle, and shading.
The illustration makes it clear that
this is not a realistic model of di-
rect lighting. However, shading
a terrain exclusively with direct
lighting is itself unrealistic, since
indirect light is cast on the terrain
by the sky and from surrounding
illuminated surfaces. In any case,
as cartographers, we often favor
clarity over realism.

APPROXIMATING MANUAL
RELIEF WITH NORMAL
MAPS

Manual shaded reliefs have char-
acteristics that make them both
very useful for terrain visualization
and very difficult for automation
(Marston and Jenny 2015; Hurni
2008). I focus on three of these
characteristics here:

• Major landforms have greater
visual weight than small land-
forms, reducing visual clutter
and noise.

• Lighting and shading are ad-
justed locally to show features
of equal prominence at roughly
equal contrast, regardless of
the map’s lighting direction.

• Greater contrast is given to the
crests of peaks and ridges, and
less is given to valley floors,
regardless of their absolute
elevation.

Figure 6. Left: Lambert shading will only illuminate surfaces that face toward the light
source at least partially. Right: With the same lighting angle, soft hillshading preserves all
the information in the surface, has a contrast profile that is less harsh, and requires less
correction by the cartographer.

Figure 7. A standard analytical shaded relief (left) compared with a manual shaded relief by
Imhof and Leuzinger (1963; shadedreliefarchive.com/Graubuenden_SW.html; right). Despite
deviating from what more physically accurate lighting would portray (or because it deviates
from it), this style is better able to communicate a mental map of the relative significance of
topographic features.

These characteristics are beyond the capabilities of stan-
dard hillshading (Figure 7), and many researchers, myself
included, continue to explore methods for automated relief
shading that more closely approximate manual reliefs. My
own explorations have mostly involved the use of normal
maps, and I have found that normal maps can be applied
to each of the characteristics listed above.

Terrain Generalization in Orientation Space

In Lambert hillshading, all slopes of a certain orientation
are given the same shade, whether that slope occurs over
a contiguous area of one square meter, or thousands of
square meters. Thus, in Lambert shading, it is common
for small, insignificant topographic features to visually

http://shadedreliefarchive.com/Graubuenden_SW.html

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 68

Figure 8. A comparison of an Andes hillshade based off generalized (left) and ungeneralized (right) elevation data. The area northeast of
center is an especially good demonstration of how Lambert shading with an ungeneralized elevation raster can obscure large features.

Figure 9. Construction of a Laplacian pyramid. Starting with an elevation raster (represented by G0), run a series of Gaussian filters, each
with twice the radius of the previous. The resulting set of blurred elevation rasters is a Gaussian pyramid (top row). To produce the levels
of the Laplacian pyramid (bottom row), subtract each level of the Gaussian pyramid from the previous level. The sum of all Laplacian levels
plus the largest Gaussian level is the original elevation raster, so the elevation raster can be generalized by assigning different weights to
these levels.

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 69

overwhelm the large features that they are a part of. This is
especially true on small-scale maps (Figure 8).

Some readers may be familiar with Pyramid Shader,
a project I worked on as a member of the Oregon State
Universit y Cartography and Visual ization Group
(terraincartography.com/PyramidShader). This Java
application uses Laplacian pyramids to isolate differ-
ent frequencies, or scales, of detail in an elevation raster
(Figure 9). Higher (smaller) frequencies are given a less-
er weight than lower (larger) frequencies, so the shad-
ing inf luence of small features is more proportional to
their size. The isolated levels of detail are then recom-
bined to produce a generalized elevation raster for hill-
shading. I describe Pyramid Shader’s method in greater
detail on my blog: geolographer.xyz/blog/2017/2/27/
an-introduction-to-pyramid-shader.

Since working on Pyramid Shader, I’ve explored using
normal maps instead of elevation rasters, and median
filters instead of Gaussian filters (Figure 10). Like the
Gaussian filter, the median filter tends to smooth out re-
gions of similar color. Unlike the Gaussian filter, median
filters preserve edges where colors abruptly change. On an
elevation raster, edges correspond to sudden changes in el-
evation, which usually represent cliffs. On a normal map,
edges correspond to abrupt changes in orientation, which
include cliffs, ridgelines, stream channels, edges of flood-
plains, and other major topographical features that a car-
tographer will likely want to retain. In other words, me-
dian filters on a normal map remove the details we don’t
want and preserve the details we do want.

Substituting normal maps for elevation rasters, and medi-
an filters for gaussian filters, it is possible to build a pseu-
do-Laplacian pyramid in a similar manner to Pyramid
Shader (Figure 11). The median filters can take much
longer to compute than the Gaussian filters, but they are
worth the wait.

Figure 10. Comparison of Gaussian (left) and median (right)
filters on an elevation raster (top) and a normal map (bottom).
The normal median (lower right) has the best results in terms
of eliminating noise while preserving scale-specific features of
cartographic interest, and thus is used in the modified pyramid
generalization algorithm.

Figure 11. A modification of Pyramid Shader’s approach. Build a median pyramid from a normal map, and then use the differences
between those medians to build a pseudo-Laplacian pyramid.

http://terraincartography.com/PyramidShader
https://geolographer.xyz/blog/2017/2/27/an-introduction-to-pyramid-shader
https://geolographer.xyz/blog/2017/2/27/an-introduction-to-pyramid-shader

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 70

Once the frequency pyramid is generated, weights can be
assigned to each level of the pyramid, and then they and
the largest median level are summed together to form the
pyramid-generalized normal map.

Pyramid Shader currently uses a linear system to assign
weights, but my preferred method is to use an exponential
function so that the coarsest frequency level has a weight
of one, and each finer frequency level’s weight is 1/b of the
weight of the previous level. If, for example, you set b = 2,
every finer level of detail has half the weight of the one
before it:

w = 1 / b(n-1)-l (Equation 8)

Where w is the weight applied to a level, b is a user-select-
ed base for the exponent, n is the number of levels, and l is
the number of the current level. Here, level numbers start
at 0, not 1.

Exponential weighting causes fine levels to be more sen-
sitive to generalization than coarse levels, which allows
the relative generalization of larger features to be kept
to a minimum. The use of normals, medians, and expo-
nential weights allows the cartographer to generalize

small features further and preserve the sharpness of large
features more easily than with Pyramid Shader’s linear
Laplacian method (Figure 12).

Variable Lighting Direction

As discussed in the soft hillshading section, the dot prod-
uct takes two vectors as inputs. One of these inputs was
variable, and the other was constant. However, there is no
reason why they can’t both be variable. By using a vari-
able light vector for hillshading, a cartographer can emu-
late the local lighting adjustments in manual hillshading.
What would this light vector raster look like?

First, since it will represent a unit vector, this raster will
have the same value limits as the normal map, and it will
satisfy Equation 1. Unlike with the normal map, the z-
band can be negative, which would mean the light is com-
ing from below the ground (probably an uncommon case,
but I encourage you to experiment with it). So, the light
vector raster can be any color you’d see in a normal map,
plus the colors with negative z values.

Second, a dot product between two unit vectors is 1 when
the vectors are equal and -1 when they are opposite. So,
the most brightly lit areas will be where the normal map

Figure 12. Normal median generalization (left) with exponential weights allows for very strong generalization of small features without
blurring large features. In Pyramid Shader (right) the same terrain, with the same number of pyramid levels, cannot have its weights
reduced further than what is shown here without visibly blurring the ridgelines and valley edges of large-scale features.

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 71

and light map are equal, and the darkest areas will be
where they are opposite.

Recall that the standard cartographic light vector is (-0.5,
0.5, 0.70711), or #3FBFD9. This is a dull cyan. The areas
where lighting is not modified will be this color on the
light vector raster. Areas where lighting should be adjusted
will be a different color. Good lighting direction choic-
es would be from the west (-0.70711, 0, 0.70711), which
is the color #257FD9, or from the southwest (-0.5, -0.5,
0.70711), which is the color #3F3FD9. You can obtain the
color for these or any other light vector by using Equation
2 through Equation 5.

To approximate manual hillshading, the lighting should
change only for major topographical features according
to their generalized aspect, which can be obtained from a
smoothed normal map. In the previous section, I covered
using median filters to smooth normal maps at different
scales. For the following example, I’ll use the highest of
those median levels. Again, I recommend using median
normals rather than Gaussian normals.

1. Multiply the z-band of the largest median level
by 0.1. Large values for the z-band can reduce the
quality of the final result, but z must be non-zero
for proper handling of level surfaces, so it is simply
reduced here.

2. Divide the result of step 1 by its magnitudes.
Use Equation 1 (). With the z-band
reduced, this new unit vector raster is essentially
an aspect map using vector values, which will be
called the xy raster.

3. Compute the dot product between
the xy raster and a horizontal vec-
tor perpendicular to the azimuth
of your main light. There will be
two vectors that fit this description,
but either choice will lead to the
same result in the next step. In this
example, my main light is from the
northwest, and I chose the vector
pointing to the southwest horizon
(-0.70711, -0.70711, 0).

4. Take the absolute value of the
result of step 3. Surfaces facing

directly toward or directly away from the hori-
zontal vector in step 3 should have their lighting
adjusted in the same way, and conveniently have
the same absolute value. The result of this step is
a mask representing the ratio with which to apply
the adjusted light vector vs. the main light vector.
If you want to narrow the range of aspects where
lighting is adjusted, multiply this mask by itself
before moving on.

5. Create the initial light vector raster with the
expression (adjustedVector × maskLayer) +
(mainVector × (1 - maskLayer)). This is a weight-
ed sum of your chosen light vectors, using the
mask’s value (or its complement) as the weight.

6. Divide the light vector by its magnitudes as in
step 2. You now have a variable light vector raster,
where the light source rotates smoothly between
your main and adjusted lighting angles depending
on color.

7. Compute the dot product of your regular or gen-
eralized normal map and the light vector raster.
I strongly recommend using a generalized normal
map from the previous section for this step.

The output of this process is a soft hillshade (Figure 13)
where, as large features face more to the southwest or
northeast, the light direction rotates toward your chosen
adjusted vector.

Another, simpler option might now be apparent from
Figure 13; you could paint your light vectors using your

Figure 13. The dot product between a generalized normal map (left) and a light
vector raster derived from one of the pyramid levels used to make that normal map
(middle) is a soft hillshade with a variable light source (right). Note that the brightest
parts of the hillshade are where the normal map and light vector colors are most
similar. In the light vector raster, cyan corresponds to standard lighting from the
northwest and blue corresponds to lighting from the southwest, both elevated 45°.

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 72

app of choice. All you need
are the colors corresponding
to the unit vectors, which you
can get using a spreadsheet
and Equation 2 through
Equation 5, or by construct-
ing a reference image such as
Figure 14. Due to the poten-
tial for color reproduction is-
sues, I recommend building
your own or f irst verifying
that the colors are correct
using the equations. While
painting may produce colors
that are not quite unit vectors, they should usually be close
enough to get decent results.

Variable lighting vectors can be useful for applications
other than manual hillshading; they could be used to make
the lighting change by latitude on a worldwide hillshade,
to simulate changing sun position in an animated or inter-
active map, or to highlight regions on a map as if they’re lit
from multiple light sources if your platform doesn’t other-
wise support them. I’m sure there are many other uses that
you could come up with.

Feature Contrast

The last feature of manual hillshading I’ll cover here is the
sharpening of contrast on ridgelines. This procedure is best
done as part of the pseudo-Laplacian pyramid generaliza-
tion discussed previously. It is labor-intensive if not done
with a script, so if you are not using Python, I recommend
only performing this operation for the largest pyramid lev-
els. The steps are:

1. Run a high-pass filter on the pyramid level with
a radius matching the radius of the median that
was used on it.

2. Multiply the high-pass filtered raster by a mask.
The creation of the mask is described below.
Optionally, you can also apply an additional mul-
tiplier here if you want even more sharpening.

3. Add the result to the median pyramid level.

4. Divide the result by its magnitudes and proceed
with the generalization as above. Use Equation
1 to obtain the magnitudes. This step may not
be necessary, but in some cases not performing it
may cause the weighted sum in the generalization
process to create unexpected results.

The creation of the mask is the most complicated part of
this process, but it is necessary because the high-pass filter
will sharpen flat areas near slopes. I recommend starting
with either a local hypsometric (LH) raster as described
by Huffman and Patterson (2013), or the difference ras-
ter from the same paper if the LH raster contains NoData
cells. In either case, use the same radius as the median fil-
ter for your pyramid level. Once that is done:

1. Divide the LH raster by its maximum value,
then take the maximum between the result and
0. This clips all negative values and ensures the
highest value is 1.

2. Take the square root of the raster. Since all
values are between 0 and 1.0, this will increase
the middle values in the raster without any change
to the minimum or maximum, similar to a curve
operation in Photoshop where the center of the
curve is moved upward.

This should yield a raster where convex areas are close to 1
and concave areas are 0, on a scale roughly matching that
of your median normal map and the high-pass filter you
ran on it.

Figure 14. A reference for unit vector colors on, left to right, a sphere, a faceted cone with a slope
of 45°, and a beveled cube.

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 73

CO N C L U S I O N
Many of the applications I discussed here can
be very labor-intensive and are more practical as scripted
tools. Pyramid Shader has a tool for creating normal maps
and soft hillshades, and I am working to finish an ArcGIS
Python toolbox called Relief Toolbox that contains those, in

addition to the rest of the applications described in this ar-
ticle. It will be available at links.esri.com/ReliefToolbox.

There are more cartographic applications for normal maps
that I haven’t covered here. Even though I’ve used some of

Figure 15. A hillshade incorporating all the applications for normal maps discussed in this article. In addition, the mask for ridge
sharpening was also used to lower contrast in the valleys.

http://links.esri.com/ReliefToolbox

Cartographic Perspectives, Number 96 Normalizing the Normal Map – Preppernau | 74

them professionally, I’m still exploring how to make them
work consistently and practically before discussing them in
a practical cartography context. In summary, further re-
search is recommended.

Still, I hope this at least serves as an introduction and en-
courages cartographers and toolmakers to explore the uses

of normal maps in cartography. Again, if you’ve ever made
a hillshade before, you’ve essentially used normal maps;
possibly without being aware of it. I think normal maps
should be at least as commonly seen and talked about in
cartography and GIS as they are in computer graphics.

AC K N OW L E D G E M E N T S
I would like to thank Bernhard Jenny, Brooke Marston, and Bojan Šavrič for, over the course of eight years, provid-
ing feedback and advice on the research and experimentation that led me to these methods. Thanks also to Jane Darbyshire
for editing and additional feedback.

The Graubünden/Ticino elevation data used for most of the terrain examples in this article was compiled by Jonathan
de Ferranti and is available at viewfinderpanoramas.org. The elevation data for Figure 6 was obtained from the US
Geological Survey at nationalmap.gov/elevation.html. The data for Figure 8 was taken from the GEBCO_2014 Grid,
version 20150318, available at www.gebco.net.

R E FE R E N C ES
Huffman, Daniel P., and Tom Patterson. 2013. “The

Design of Gray Earth: A Monochrome Terrain
Dataset of the World.” Cartographic Perspectives 74:
61–70. https://doi.org/10.14714/cp74.580.

Hurni, Lorenz. 2008. “Cartographic Mountain Relief
Presentation.” In Mountain Mapping and Visualisation:
Proceedings of the 6th ICA Mountain Cartography
Workshop, edited by Lorenz Hurni and Karel Kriz,
11–15. Zürich: ETH Zürich.

Lambert, Johann Heinrich. 1760. Photometria Sive de
Mensura et Gradibus Luminis, Colorum et Umbrae.
Augsburg: Klett.

Marston, Brooke E., and Bernhard Jenny. 2015.
“Improving the Representation of Major Landforms
in Analytical Relief Shading.” International Journal
of Geographical Information Science 29 (7): 1144–1165.
https://doi.org/10.1080/13658816.2015.1009911.

http://viewfinderpanoramas.org
http://nationalmap.gov/elevation.html
http://www.gebco.net
https://doi.org/10.14714/cp74.580
https://doi.org/10.1080/13658816.2015.1009911

