
Cartographic Perspectives, Number 97

© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0.

Frequently Updated Maps and their Public Display – Peterson & Hunt | 43

The display of maps on computer monitors in a public setting can be used to emphasize their value in conveying spatial
patterns. For thematic maps, by removing the possibility for interaction, more attention can be focused on the mapped
distributions. Maps that lend themselves best for public display are those that are frequently updated, such as weather
maps. Other types of frequently updated maps (FUMs) include those of earthquakes, air pollution, and health conditions,
such as the spread of a virus. These types of maps are increasingly provided through the internet in an interactive format,
making the resultant maps less suited for public display. Described here are available maps that could be displayed in a
public setting, and a method to make maps for quick display based on available data. A series of these maps can then be
assembled and shown in a continuous loop. The display of maps for the public can be implemented using the low-cost,
Raspberry Pi computer. Maps that are suitable for public display, instructions for implementation, and the required code
are available at: maps.unomaha.community/FUMPD/About.html.

I N T R O D U C T I O N
A fundamental change in cartography since the
beginning of the 1990s has been the incorporation of in-
teraction (Peterson 1995) into many maps. However, this
trend has not always been for the best. For example, the
most common type of interaction that is implemented for
thematic maps is the ability for users to view individual
data values. As a result, the map is reduced to little more
than a spatial table, often to the detriment of its main pur-
pose of communicating spatial patterns.

One way around this problem is to offer non-interactive
maps more often, to promote better pattern recognition.
These may be shown as part of automated map displays in
public settings, such as on monitors in lobbies, airports,
offices, etc. Frequently updated maps (FUMs; Peterson
and Wendel 2003) work well here, as they generate the
most interest in a public setting. However, the trend

toward interactive map design means that there are few
ready-made examples to display in such settings. In this
article, we introduce (1) an inventory of FUMs that could
be part of such an automated display; (2) methods for con-
verting existing interactive maps to non-interactive, but
frequently updated maps; (3) how to make maps directly
from the underlying data; and (4) a low-cost solution for
setting up a public display.

The FUMforPD website (maps.unomaha.community/
FUMPD/About.html) accompanies this article. It as-
sembles many of the currently available FUMs and shows
how maps for public display can be made from the under-
lying data. It also includes code for the display of a series
of maps in a continuous loop and shows how a low-cost
computer can be used for such displays.

E X A M P L ES O F FR E Q U E N T LY U P DAT E D M A P S
Weather maps are a prime example of FUMs, with
some being refreshed every 30 minutes. Initially, these
maps were once only available through the internet as stat-
ic images. Today, most weather websites have incorporated

interaction into their display. Weather.com, for example,
offers multi-scale pannable maps (MSP), implement-
ed through Mapbox, to display radar imagery and storm
paths. A limited number of static maps, more suitable for a

Michael P. Peterson (he/him)
University of Nebraska at Omaha

mpeterson@unomaha.edu

Paul Hunt (he/him)
University of Nebraska at Omaha

phunt@unomaha.edu

DOI: 10.14714/CP97.1675 PRACT ICAL CARTOGRAPHER'S CORNER

Frequently Updated Maps and their Public Display

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://maps.unomaha.community/FUMPD/About.html
https://maps.unomaha.community/FUMPD/About.html
https://maps.unomaha.community/FUMPD/About.html
https://weather.com/

Cartographic Perspectives, Number 97 Frequently Updated Maps and their Public Display – Peterson & Hunt | 44

public display, are also available under a “Classic Weather
Maps” link (Figure 1). Likewise, the Sat24.com website
offers similar products for Europe (Figure 2).

While weather maps have been available through the inter-
net for many years, a new kind of FUM became necessary

in early 2020: maps that depicted the spread of COVID-
19. Figure 3 shows two maps from ourworldindata.org/
coronavirus that depict cases and deaths over a two-week
period. These maps are updated daily and made available
in SVG, a vector format suitable for display through a web
browser.

Figure 3. Two maps of COVID-19 from ourworldindata.org/coronavirus, showing biweekly cases and deaths.

Figure 1. Two examples of “classic” maps from Weather.com.

Figure 2. Single frames from two animated GIFs from Sat24.com, showing cloud cover (left) and rainfall (right).

https://Sat24.com/
https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
http://Weather.com
http://Sat24.com

Cartographic Perspectives, Number 97 Frequently Updated Maps and their Public Display – Peterson & Hunt | 45

Current maps of earthquakes are
provided by the United States
Geolog ic a l Su r ve y (USGS)
as MSP maps, made with the
Leaflet API, atop a basemap from
OpenStreetMap (earthquake.usgs.
gov). The underlying data is also
available, provided in a JSON for-
mat. Maps specif ically designed
for non-interactive display can be
created from this data using a vari-
ety of online tools. Figure 4 shows
both the map provided by USGS
and a map made from USGS-
supplied, real-time data using
the Google Maps API. The latter
was saved in the PNG format for
display.

Frequent ly updated maps of
air pollution are also available.
PurpleAir operates a citizen net-
work of over 16,000 sensors that
measure particulate pollution, both
PM2.5 and PM10 (purpleair.com).
They offer a web map that uses the
Mapbox API to display data from
these sensors (purpleair.com/map),
as well as the underlying data
(purpleair.com/data.json). Both
the PurpleAir map, and a map that
we prepared based upon their data,
can be seen in Figure 5. Our map
was built using the Google Maps

Figure 4. Two maps of earthquakes for a 7-day period. The top, interactive, map,
including plate boundaries, is from the USGS (orange and red circles indicate more recent
earthquakes). The bottom map is based on the same USGS data feed. It was made with the
Google Maps API and saved in the PNG format.

Figure 5. Two maps of PM2.5 particulate air pollution. The map on the left is from PurpleAir, while the map on the right was produced
by us based on PurpleAir data. The map on the right is not interactive and does not include numbers within each circle. The green forest
cover shading has also been removed from the basemap. While the green/yellow/red color scheme may create an accessibility issue for
those with atypical color vision, the scheme was used to mimic the original PurpleAir map.

https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://www.purpleair.com/
https://www.purpleair.com/map
https://www.purpleair.com/data.json
https://www.purpleair.com/data.json
https://www.purpleair.com/data.json

Cartographic Perspectives, Number 97 Frequently Updated Maps and their Public Display – Peterson & Hunt | 46

API, and has been simplified, as compared to PurpleAir’s,
by removing the green shading for forest cover to improve

the visibility of the green symbols. The symbols have also
been made partly transparent.

CO N V E R S I O N O F M A P S TO I M AG ES
Now that we have some idea of the available maps
and datasets, we’ll walk through how we showed them
on a public display. One option would have been to sim-
ply point a web browser at one of the interactive maps
described above and let it refresh at regular intervals.
However, many interactive maps (such as those for earth-
quakes and air pollution) require considerable time to dis-
play, due to the quantity of data being loaded. Even with
a fast internet connection, the loading time can sometimes
exceed 30 seconds. The recognition of spatial patterns on
maps is generally thought to occur more quickly. As a re-
sult, the slow display interferes with spatial pattern recog-
nition, particularly in a public setting where people may
have limited time to examine the map. The fastest image
display times are achieved with pre-made, suitably-sized
maps in either the PNG, JPG, or GIF formats. Vector
SVG files can also be displayed quickly depending on
their complexity.

To make interactive maps more suitable for display, we
made use of Puppeteer, a Node JavaScript API, that can
take static screenshots of the interactive maps. The API
can extract data from websites, a process called web scrap-
ing (Leitner 2019). Puppeteer installs the Chromium
browser that works with the API. Example 1 shows a seg-
ment of Puppeteer code that will capture a screenshot. All
of our code is available at the FUMforPD website (maps.
unomaha.community/FUMPD/About.html). Puppeteer
sets an initial page size to 800×600px, and the size of the
image can be customized with Page.setViewport(). The
size of both the earthquake and air pollution maps seen in
this article was 2100×1000 pixels.

To simplify the maintenance and infrastructure needs of
Puppeteer, an Amazon Web Services (AWS) serverless ar-
chitecture was implemented. AWS Lambda (aws. amazon.
com/lambda) is a serverless compute service that runs
code in response to events and manages the underlying
compute resources. AWS Lambda extends other AWS
services by, for example, creating back-end services such as
an HTTP request. The server-side JavaScript screenshot
code is executed here with AWS Lambda.

We used AWS Simple Storage Solutions (S3), an object
storage service, to store the static screenshot images gen-
erated by Puppeteer. AWS S3 is essentially storage for
the internet. It can be used to store and retrieve differing
amounts of data from anywhere on the web. Within the S3
service, users create “Buckets,” which can be thought of as
folders that are used to store the object-based files. In our
case, the PNG screenshots were stored in a bucket called
“peterson-screenshots,” producing the following URL for
one of the png files: peterson-screenshots.s3.amazonaws.
com/2_Day.png. This particular PNG file depicts earth-
quakes for the past day using the Google Maps API, and
is updated every hour. The USGS supplies JSON files
for earthquakes in four time intervals: past hour, past 24
hours, past week, and past month. We added some code
that incorporates a time-stamp into the bottom of each
map (see Example 2).

For showing air pollution, we downloaded data from
PurpleAir and produced multiple maps at different scales
for multiple regions of the world. To limit server load,
PurpleAir allows their data to be accessed once every 30
seconds. Because multiple maps are being made, the full
dataset is temporarily downloaded to an S3 bucket, and
our code makes maps based on this local file. The data
is then overwritten an hour later when the next series of
maps are made.

Example 1. Puppeteer code that works with the Chromium
browser to capture a screenshot of a web page.

https://www.purpleair.com/data.json
https://www.purpleair.com/data.json
https://www.purpleair.com/data.json
https://www.purpleair.com/data.json
https://maps.unomaha.community/FUMPD/About.html
https://maps.unomaha.community/FUMPD/About.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://peterson-screenshots.s3.amazonaws.com/2_Day.png
https://peterson-screenshots.s3.amazonaws.com/2_Day.png

Cartographic Perspectives, Number 97 Frequently Updated Maps and their Public Display – Peterson & Hunt | 47

The PNG maps of earthquakes and air pollution are up-
dated hourly. This is achieved by establishing an AWS
CloudWatch EventBridge (docs.aws.amazon.com/
eventbridge). The EventBridge framework allows for
scheduling the execution of the cloud-based screenshot
function in AWS Lambda.

AUTOM ATED D ISPL AY OF IM AGES
After generating images, the next step is to auto-
matically display them. Again, all the code is available
through the FUMforPD website. There, you can find
HTML/JavaScript that can be run on Google Chrome on
Windows or Mac OS. Example 3 presents a part of both
the HTML and JavaScript code where the images are ref-
erenced. In our example, the size of the images has been
adjusted for a 1920×1200 pixel monitor, with some made
larger to zoom-in on an area of interest.

To display other images, download the code from any of
the examples on the FUMforPD website and change the
addresses of the images shown in both the HTML and
JavaScript parts of the code as shown in Example 3. The
width of the images can be matched to the monitor using
a value of 100% or zoomed to a particular area of interest
by using a larger number for the width or height of the
image.

Example 2. JavaScript code that adds the time stamp to each map. The time for AWS Lambda servers corresponds to UTC.

Example 3. Code segment for the automated display of images.
The addresses of the images are entered in both the HTML (top)
and JavaScript (bottom) parts of the code.

https://docs.aws.amazon.com/eventbridge/
https://docs.aws.amazon.com/eventbridge/
http://maps.unomaha.community/FUMPD/About.html

Cartographic Perspectives, Number 97 Frequently Updated Maps and their Public Display – Peterson & Hunt | 48

Once we have the code to show the maps, the next step
is to display them seamlessly. We recommend the Google
Chrome browser, which can be automatically started in
full-screen mode. Full-screen mode is set in the view menu
(Figure 6). In the browser’s Preferences, you can also set it
to “Continue where you left off,” on starting the browser,
meaning that Chrome will open in full-screen mode, dis-
playing the last webpage viewed in the browser.

The last step to automating this process is to ensure that
Chrome is launched on startup. In this way, if the com-
puter is reset, Chrome will automatically begin again, go
to full screen, and return to the map display. On a Mac,
this is done using the Login Items tab under the Users
and Groups System Preference. In Windows, in the
Start button, select Settings > Apps > Startup and select
Google Chrome to run at startup.

Depending on your settings, an electronic timer may be
necessary to control when the display is active. While some
computers can be set to turn on and off at specified times,
this control may not extend to the monitor. Whether or
not an electronic timer is used, the computer should be set
to start automatically after a power outage.

Figure 7 shows a series of six automated weather and map
displays at the University of Nebraska at Omaha. Initially
based on older computers, primarily Macs, most displays
have been converted to use a Raspberry Pi.

D I S P L AY W I T H A R A S P B E R RY P I
To reliably display maps in a public setting, we
found the Raspberry Pi (RPi) computer to be a low-cost
and low-power solution. An RPi consists of the computer
(see Figure 8), a power supply, and an SD memory card.
While these are all sold separately, they can be acquired as
a kit for about US $65. A plastic case for the computer can
also be purchased separately.

When purchased, the RPi does not include any soft-
ware—even an operating system. All required software
can be freely downloaded from raspberrypi.org. In a pro-
cess called “flashing,” the RPi OS is loaded onto the mi-
cro-SD card, which acts like a hard drive for the computer.
The flashing process requires a Windows, Mac, or Ubuntu
computer, running a f lashing program such as Etcher
(balena.io/etcher). Once the SD card has been f lashed
with the operating system, it can be physically installed

Figure 6. Google Chrome options for full-screen display and
continuing with the current settings after re-start, including the
full-screen display.

Figure 7. An automated map display consisting of six computers
at the University of Nebraska at Omaha.

https://www.raspberrypi.org/
https://www.balena.io/etcher/

Cartographic Perspectives, Number 97 Frequently Updated Maps and their Public Display – Peterson & Hunt | 49

in the RPi. The computer then
boots to LXDE (Lightweight
X11 Desktop Environment),
a Windows-like desktop envi-
ronment that includes standard
menus and dialogs.

Some setup is necessary to con-
figure the RPi to open a web-
page at startup that displays the
maps. This webpage should be
configured to continuously cycle
through a series of maps, and it’s
best if it webpage resides on a
separate server so that it can be
more easily modified.

The RPi uses the Chromium
browser, and much like with
the Chrome browser above,
this needs to be set to enter full-screen mode on start-
up. Although the RPi can be set to start and shut down
at specified times, it does not have this control over the
monitor. A simple external timer must be used to re-
move power to both the computer and monitor during
hours when it is not being viewed. The RPi and monitor
will power up automatically when power is restored. The
Chromium browser is set to start automatically, retrieving
the webpage from a server that displays the maps.

Let’s start setting things up by entering this command in
LXTerminal:

raspi-config

and select “boot to desktop,” as well as your local time
zone. Next, to configure the RPi’s wifi access, enter:

sudo nano /etc/wpa_supplicant/wpa_supplicant.
conf

network={

ssid=”YOUR_NETWORK_NAME”

psk=”YOUR_WIFI_PASSWORD”

}

Save changes and quit (ctrl-o, ctrl-x). The Wifi address
must be straightforward. For example, it is not a simple
matter to enter the necessary parameters for an eduroam
connection.

The unclutter app hides the mouse pointer, for a cleaner
display. It is installed using this command:

sudo apt-get install unclutter

The screen is forced to stay on (not sleep) and the
Chromium browser is automatically started by editing this
file:

sudo nano /home/pi/.config/lxsession/LXDE-pi/
autostart

If this file does not open, try the alternate location for the
autostart file:

sudo nano /etc/xdg/lxsession/LXDE-pi/autostart

Then add these lines at the end of the file:

@xset s off

@xset -dpms

@xset s 0 0

@xset s noblank

@xset s noexpose

@xset dpms 0 0 0

@chromium-browser --noerrdialogs --incognito
--autoplay-policy=no-user-gesture-required
--check-for-update-interval=1 --simulate-
critical-update --kiosk https://URL of the

Figure 8. The $65 Raspberry Pi Model 4 computer. The device can be easily programmed to
automatically display maps in a public setting.

Cartographic Perspectives, Number 97 Frequently Updated Maps and their Public Display – Peterson & Hunt | 50

web page that cycles through the maps

The computer can then be rebooted by entering:

sudo reboot

or by temporarily removing power.

When the RPi restarts, the images specif ied in the
HTML link will be displayed in full-screen mode. They

will automatically update and continue displaying until
the computer is shut down or power is removed.

A good exercise in working with the RPi is to create a
DAKboard (dakboard.com), a customizable web-based
display. The instructions found at blog.dakboard.com/diy-
wall-display explain the process of setting up a Raspberry
Pi to create a personalized wall display via DAKboard.

CO N C L U S I O N
The display of thematic maps in a public setting
encourages spatial pattern recognition. However, many
interactive maps available online load slowly enough that
they can interfere with this pattern recognition. While
watching a map being drawn on the screen might attract
attention, interactive maps are rarely updated in a way
that encourages the recognition of broad patterns. If pat-
tern recognition occurs quickly—as is generally thought
to be the case—any delay in creating the pattern can only
be detrimental to pattern recognition. This would be espe-
cially be true in a public setting where the map viewer may
not take the time to wait for the map to be completed.

Converting interactive maps to images for quick display
may be the best solution to further spatial pattern recog-
nition. The specific method we demonstrate here involves
the hourly updating of earthquake and air pollution data,
while incorporating design elements to promote pattern

recognition. The maps available through the FUMforPD
website will continue to be updated as long as the neces-
sary infrastructure remains in place. We hope that oth-
ers will create similar displays of frequently updated data,
and expand on this method to show new datasets, and al-
ternative visualizations of existing datasets. For example,
PurpleAir data could be processed to display day-to-day
changes in air pollution.

While we encourage the public display of maps and the
use of the low-cost Raspberry Pi computer, we recognize
that these displays will only be only viewed by a limited
number of people. We believe, however, that displays of
maps in a public setting will encourage better map design,
towards more thoughtful visualizations that promote spa-
tial pattern recognition. The public display of maps that
we advocate should encourage better thematic map design
for all applications.

R E FE R E N C ES
Leitner, Christopher. 2019. “How to Scrape Amazon

Product Information with Nodejs & Puppeteer.”
Zenscrape. Accessed June 24, 2021. https://zenscrape.
com/how-to-scrape-amazon-product-information-
with-nodejs-and-puppeteer/

Peterson, Michael P., and Jochen Wendel. 2003. “The
Animation of Frequently Updated Maps.” Annual
Meeting of the Association of American Geographers, New
Orleans, LA, Febuary 28–March 3, 2003.

Peterson, Michael P. 1995. Interactive and Animated
Cartography. Upper Saddle River, NJ: Prentice-Hall.

https://www.dakboard.com/
https://blog.dakboard.com/diy-wall-display/
https://blog.dakboard.com/diy-wall-display/
https://zenscrape.com/how-to-scrape-amazon-product-information-with-nodejs-and-puppeteer/
https://zenscrape.com/how-to-scrape-amazon-product-information-with-nodejs-and-puppeteer/
https://zenscrape.com/how-to-scrape-amazon-product-information-with-nodejs-and-puppeteer/

