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This study presents the development of a world map projection intended to minimize distortion of all continents. I begin 
by reviewing a very similar map projection developed by Canters (2002), and address its shortcomings by carefully 
fine-tuning the initial constraints and the method of optimization, while retaining the most useful ideas of this earlier 
map. Most notably, the method described in this paper puts a great emphasis on the outline of the map, so that its aes-
thetics make it more suitable for atlases; the method also exclusively uses reproducible, deterministic methods. Finally, I 
compare the resulting world map to the original one of Canters in terms of map distortions and practical usefulness. The 
method presented here should work without changes if a low-distortion map of any other global-scale area is needed.
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B AC KG R O U N D
“A map projection is the mapping of a curved 
surface, especially a sphere or ellipsoid, into a plane” 
(Lapaine 2017). It is evident that map projections distort 
our view of the Earth, but their application is inevitable. 
On one hand, when compared to a physical or virtual 
globe, flat maps are easier to store (or are easier displayed 
on a flat screen) and provide an easier overview of relations 
covering more than a hemisphere. On the other hand, the 
distortions of map projections are generally a disadvantage 
that we need to eliminate as much as possible.

We should note that although the reduction of map dis-
tortion is a traditional approach in cartography, it is not 
the only meaningful workf low. Some maps are inten-
tionally distorted to visualize a particular dataset, such as 
showing the areas of political units in proportion to their 
populations, or by spacing locations not by their physical 
distance, but based on the travel time between points. 
The reader may find further information on the theory 
and mathematics behind such intentionally distorted map 
projections (known as cartograms) in Gastner, Seguy, and 
More (2018). In this paper, however, the aim will be to 
minimize distortion with respect to the geographic reality.

The theory of Meshcheryakov (1968) states that for each 
area there exists an “ideal projection” that has the lowest 
amount of distortion possible for that area. The exact solu-
tion is still an open problem for general areas, but there 
are plenty of methods to approximate this map projection 
by polynomials or similar series. The ideal projection is 
strongly coupled to the region it was optimized for: each 
subset of the sphere will have a different ideal projection.

Although this paper deals with world maps, I will not 
minimize distortion for the full globe; apart from a few 
exceptions, a map’s primary theme is usually confined to 
either the continents or the world ocean. As I have already 
previously investigated a low-distortion map of the world 
ocean (Kerkovits 2022), the domain of the optimization in 
this paper will instead be the landmasses of the earth. As 
the result will be a world map, the ~20 km difference be-
tween a sphere and the actual shape of the earth will not 
be considered; this difference diminishes to insignificance 
at the smaller map scales usually used for world maps.

Most world maps are plotted in a normal aspect. However, 
the distribution of the continents is highly asymmetrical 
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about the equator, leading to an imbalance of distortion. 
Landmasses near the poles, such as Antarctica, are often 
distorted into unrecognizable shapes. This means that in 
the optimal map, the aspect of the projection (Lapaine 
and Frančula 2016) should be rotated, so that continents 
are far from the new “poles,” which are called metapoles 
or pseudopoles. This is just a spatial rotation of the sphere, 
and it allows us to move our area of interest into the most 

advantageous parts of the projection. The most general as-
pect of a map projection (i.e., neither angle of rotation is 
a multiple of 90°) is called a plagal aspect by Wray (1974). 
Applying of plagal aspect mappings makes the most sense 
if Antarctica is important in our map (this is the weak 
point of most normal aspect world maps), and the optimi-
zation in this study will consider Antarctica as important 
as any other continent.

A N  E A R L I E R ,  S I M I L A R  WO R K
Canters (2002, 209–212) has already proposed a 
world map in plagal aspect with similar design principles 
to the one I will present here. Canters used random pairs 
of points and compared their mapped distances to their 
original ones. He adjusted the parameters of the map pro-
jection using the downhill simplex method until the av-
erage difference in distance could not be reduced further. 
However, his resulting map has several shortcomings:

• The methodology of Canters is reproducible only in 
a statistical sense. Furthermore, the consideration of 
such finite elements inevitably suffers from the “edge 
effect” (Albinus 1981; Laskowski 1997; Kerkovits 
2019), so the peripheral parts of continents (i.e., areas 
near the coasts) have less weight during the optimi-
zation. The method I will present uses a deterministic 
method to determine the best fitting parameters, 
which also resolves the edge effect.

• Canters did not find the optimal aspect parameters 
for his oblique maps. I experimented with the down-
hill simplex method using different initial values and 
found that the arrangement of Canters is only a local 

minimum with respect to the distortion. In most 
cases, the downhill simplex method converged to a 
neighborhood of another minimum described later 
in this paper. That one has a lower distortion value, 
and so it is a more likely candidate to be the global 
minimum.

• The outline of a map projection is irrelevant for 
regional maps, where the cartographer may crop the 
map by a frame of arbitrary shape. However, it is a 
crucial aesthetic point for world maps, where the map 
frame is exactly the border of the map projection. 
Apparently, Canters did not consider this; therefore, 
his map has a very unusual shape (Figure 1). It bends 
concave near the metaequator (pseudoequator) and 
has sharp concave corners at the metapoles. My pro-
posed projection puts a great emphasis on the outline 
of the final map.

Thus, one may consider this paper as an attempt to im-
prove the methods and the map of Canters, while trying 
to keep the advantages of the original design.

D ES I G N  CO N S I D E R AT I O N S
The map presented in this paper has been de-
signed to show continents with low distortions. However, 
these distortions must be measured on an infinitesimal 
scale: distortion measurements of f inite shapes are all 
based on random samples, and thus are not reproducible 
in a strict sense. Deterministic methods are preferred. 
Furthermore, random samples are not distributed uni-
formly; due to the edge effect they are a bit sparser near 
the boundaries of the area. In this study, coastal regions 
are regarded as equally important compared to inland 

parts. Therefore, the Airy–Kavrayskiy criterion described 
later in Equation 14 was chosen to be the distortion value 
of the optimization.

Ideal map projections, despite their name, are not neces-
sarily the “best” mappings. They have unusual properties 
that can hinder their aesthetic value. Most prominently, 
as the distribution of continents is asymmetrical on the 
earth, it is obvious that their ideal map is also asymmet-
rical. However, the map frame should be symmetrical 
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to resemble the symmetries of the underlying sphere. 
Therefore, the map projection developed here will be sym-
metrical about both the metaequator and the prime meta-
meridian. This ensures the symmetry of the map frame 
and the distortion distribution. Nevertheless, the map 
graticule will be asymmetrical due to the plagal aspect.

It is well known that flat-polar maps can have, in general, 
lower distortions than pointed-polar ones (Snyder 1985, 
124). However, flat-polar oblique world maps are not en-
countered in serious publications, and oblique world maps 
of established authors (e.g., Bartholomew, Briesemeister) 
are all pointed-polar. A possible reason is that while map 
readers are accustomed to seeing the true pole represented 
by a pole line, the same is not accepted in the case of an 
arbitrary metapole. It’s worth noting that there are some 

oblique flat-polar maps, by authors such as Winkel and 
Wagner, but these have their metapoles placed outside the 
map frame. Consequently, the map projection developed 
here will be pointed-polar.

We must also observe that in oblique world maps, such 
as previous examples like the Atlantis or the Bertin pro-
jections, the metapole is never cusped (like in the sinusoi-
dal projection), but the map frame is smooth. Assuming 
that this decision comes from aesthetic consideration, this 
study will prescribe that the map frame must be smooth 
at the metapoles. Furthermore, metameridians (except 
the prime metameridian) will also pass through the meta-
pole without a cusp, so that graticule lines will continue 
smoothly (an example of such a map is that of Mollweide).

F O R M U L A E  O F  T H E  M A P  P R OJ E C T I O N
In the mathematical development of the new 
map, we will assume that the earth is a sphere of unit 
radius. Following the usual convention, φ will stand for 

latitude and longitude will be denoted as λ. Unless ex-
plicitly marked by a degree symbol, all angles are in ra-
dians. The image of the map projection is on the plane 

Figure 1. The plagal map projection of Canters (2002, 213) Purple lines: areal scale, green lines: maximal angular deviation.
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parametrized by a usual Cartesian coordinate system. 
Planar coordinates are denoted by x and y.

The formulae of the map projection must be developed with 
due care. The exact formulation influences the result of the 
optimization significantly (Canters 2002). We must allow 
the map projection to take any possible shape permitted by 
the prior constraints. Assuming that the optimal projec-
tion is smooth (analytical), a polynomial can approximate 
it to arbitrary precision. On the other hand, simple poly-
nomials permit flat-polar projections. A map projection 
symmetrical about its mid-meridian is pointed-polar if 

  (1)

Bimeridians will cross the pole without a cusp if they are 
perpendicular to the vertical axis:

  (2)

The simplest function that satisfies the constraints of x is 
achieved by transforming the equation of a circle:

  (3)

where Px(φ, λ) can be any polynomial of φ and λ.

The constraint on y is less specific, as it only requests that 
its derivative must be zero at two points. It may either 
be achieved by a quadratic function or a cosine function. 
Testing both ideas, it turned out that the latter one be-
haved better (allowed for more flexibility during optimi-
zation) when being multiplied by the polynomial, so ∂y/∂λ 
was chosen to be P'y (φ, λ)cosφ. Integrating it with respect 
to λ yields

  (4)

where Pc(φ) is a constant of integration, which is a polyno-
mial of φ, and Py(φ, λ) is the antiderivative of polynomial 
P'y (φ, λ). Namely, Py(φ, λ) can be almost any polynomial, 
but it must not contain terms constant in λ.

Symmetry about the mid-meridian and the equator can 
be achieved by constraining the parity of functions x and 
y. In our case, Px must be an even function of φ and an 
odd function of λ, Py must be an odd function φ of and an 

even function of λ, and Pc must be an odd function of φ. 
Putting this together:

  (5)

  (6)

The polynomials were truncated at the fifth degree. A 
major problem was that even with fifth-degree polynomi-
als, I found seemingly completely different sets of coeffi-
cients as local minima with different starting values, but 
there was absolutely no visual difference in the resulting 
maps, and their estimated distortion value was different by 
less than 0.0001%. This experience suggests that a better 
approximation might be meaningless.

Additionally, I examined seventh-degree polynomi-
als. However, the computation time was more than 10 
hours on a modern desktop computer, compared to the 
more reasonable 20–30 minutes needed for optimizing 
the fifth-degree polynomial. This made it cumbersome 
to check different starting values, although the downhill 
simplex method seemed to be very sensitive to them: it 
reported local minima very far from each other, none of 
which could be responsibly reported as a global minimum. 
Nevertheless, the resulting maps were close in appearance 
to the result of the fifth-degree polynomial, so that there 
appeared to be no practical benefit from using higher-de-
gree polynomials.

This resulting map projection can then be applied in the 
plagal aspect to further minimize distortion. Namely, 
the metapole is rotated to a point at φ0, λ0, and the prime 
metameridian has azimuth λ'p. In this case, the metalati-
tude φ' and metalongitude λ' becomes (Snyder 1987):

  (7)

  (8)

but it should be noted that the arctan function should ac-
tually be implemented as atan2 in many conventional pro-
gramming languages.

When applying Equations 5 and 6, the metacoordinates 
obtained in Equations 7 and 8 should be substituted for φ 
and λ.
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O P T I M I Z AT I O N  O F  CO E FF I C I E N T S
Coefficients Aij, Bij and parameters φ0, λ0, λ'p of 
the aspect were optimized against the Airy–Kavrayskiy 
criterion (denoted as E) calculated as (Györffy 2018):

  (9)

  (10)

  (11)

  (12)

  (13)

  (14)

where S is the surface of continents.

The surface integral in Equation 14 should be calculated 
over irregular spherical polygons. It was, in fact, evaluated 
numerically using the two-point Gaussian quadrature gen-
eralized for spherical polygons (Kerkovits 2020). Optimal 
parameters were found by a more robust variant of the 
downhill simplex method as designed by Kaczmarczyk 
(1999).

Simultaneous optimization of the aspect parameters and 
coefficients made the method unstable, converging into 
various local minima. Therefore, in the first step, only the 
aspect parameters were optimized, trying a few starting 
values. Most runs resulted in φ0 ≈ 37.8711°, λ0 ≈ 168.0160°, 
λ'p ≈ -140.8168°, which is quite far from what Canters 
(2002) reported: φ0 ≈ 30°, λ0 ≈ -140°, λ'p ≈ 150° using the 
notation conventions of this study. Furthermore, a few 
starting values led the downhill simplex to other local 
minima: notably, one of the local minima was pretty close 
to the values Canters reported and showed only slightly 
bigger distortion values (see exact values in the next sec-
tion) after optimizing the coefficients: φ0 ≈ 19.1366°, λ0 ≈ 
-118.2273°, λ'p ≈ 140.1385°. Some selected starting values 
that I tried can be checked in Table 1. Minima were con-
sidered identical if they resulted in the same map upside 
down.

It seems that Canters only found a local minimum for the 
aspect parameters. Although Canters excluded Antarctica 
from the optimization, the optimal map projection has 
circa 3.27% less distortion if we use the aspect parameters 
developed here instead of Canters’s one, even if Antarctica 
is excluded from the calculation. The result of this cor-
rection is that Antarctica will be moved from the bottom 
right corner to the bottom left one, and the antimeridian 
cut will go through the Drake Passage instead of pass-
ing by the Kerguelen Islands. Cartographic effects of this 
change are discussed at the end of the paper.

In the second step, the aspect parameters were fixed and 
only coefficients were optimized. Allowing the aspect pa-
rameters to change, distortions would have been decreased 

Table 1. Influence of starting values on the result of aspect 
parameter optimization.

Starting value
Terminated at

φ0 λ0 λ'p

90° 0° 0° Global minimum

90° 0° 90° Other local minimum

90° 0° 180° Canters’s minimum

90° 0° -90° Canters’s minimum

45° 0° 0° Global minimum

45° 90° -90° Global minimum

45° -90° 90° Global minimum

-45° 0° 0° Other local minimum

0° 0° 0° Global minimum

0° 90° 0° Global minimum

0° 180° 0° Canters’s minimum

0° -90° 0° Other local minimum

0° 0° 90° Canters’s minimum

0° 0° 180° Global minimum
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further, but the map frame would have cut into the middle 
of South America, which is clearly unacceptable for a map 
projection that is themed around continents. As an aes-
thetic consideration, angles of the aspect parameters were 
rounded to the nearest 5° so that the graticule lines of the 
map would symmetrically “snap” to the map frame. The 

starting projection was the Apian II (Aij = Bij = 0 but A₀₁ 
= B₁₀ = 1), but in order to avoid reporting local minima, 
the downhill simplex method was restarted near the result 
of the last run and the result was accepted only if two suc-
cessive runs reported the same minimum.

T H E  R ES U LT I N G  M A P  P R OJ E C T I O N
As mentioned previously, two sets of aspect 
parameters were tried. The first, φ0 = 20°, λ0 = -120°, λ'p 
= 140° (close to Canters’s original suggestion) resulted in 
E ≈ 0.186371, while the new parameters of φ0 = 40°, λ0 
= 170°, λ'p = -140° lead the optimization to E ≈ 0.178772. 
Therefore, the previous set of parameters were discarded. 
Finally, the calculated coefficients are: A₀₁ ≈ 0.843705, 
A₀₃ ≈ 0.009100, A₂₁ ≈ 0.028176, A₀₅ ≈ -0.001242, 
A₂₃ ≈ -0.001448, A₄₁ ≈ 0.063196, B₁₀ ≈ 0.953366, B₃₀ 
≈ 0.033826, B₁₂ ≈ 0.015131, B₅₀ ≈ -0.006287, B₃₂ ≈ 
-0.025215, B₁₄ ≈ 0.008227.

Substituting this into Equations 5–8, one gets the map 
displayed in Figures 2–4. The reader is advised to compare 

the distortion isolines to that of Canters’s original map 
(Figure 1). It can be observed that both angular and areal 
distortions decreased significantly at most places. The big-
gest winner is, of course, Antarctica, where areal inflation 
decreased from 150% to only 10%, and the angular de-
viation was changed from 20° to 7°. Other regions gain-
ing much better representation include South Africa (in-
flation: 100% → 50%; angular deviation: 40° → 25°) and 
Mexico (inflation: 50% → –2%; angular deviation: 25° → 
12°). Weak points of the new mapping are in Australia 
(inflation almost unchanged; angular deviation: 3° → 12°) 
and Chile (inflation: 0% → 12%; angular deviation effec-
tively the same). In general, the new projection surpasses 
Canters’s one.

Figure 2. The new map projection developed in this paper (isolines of areal scale).
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Figure 3. The new map projection developed in this paper (isolines of maximum angular deviation).

Figure 4. The new map projection developed in this paper (without isolines)
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CO N C L U S I O N S
Comparing the overall texture of the new 
map to that of Canters, the map presented here is sig-
nificantly more compact. Continents appear to be clos-
er to each other, emphasizing their global connections. 
However, the different placement of the discontinuity at 
the antimeridian has stretched the southern tip of Africa 
slightly away from South America, and the connection be-
tween Antarctica and South America is lost. These dis-
advantages are, however, not so large: South Africa and 
Argentina are quite far from each in reality, and one can 
hardly find a map theme in which global connections be-
tween South America and Antarctica would be crucial. 
However, for situations where such proximities do matter, 
the present map can show the proximity of New Zealand 
to Antarctica or even to its outlying islands, which is a fea-
ture absent from Canters’s map.

The amount of distortion was already quite low, but it 
could even be reduced further by trying to avoid local 
minima and carefully selecting the functions used in the 
development. This paper used fifth-degree polynomials 
for the approximation, as the computation technology has 

not advanced enough since Canters to allow for a better 
approximation.

The frame of the resulting map looks like a rounded rect-
angle. This might be considered as an advantage, as it 
fits well in a rectangular screen or a rectangular sheet of 
paper. However, this shape has very low resemblance to 
the near-spherical shape of the Earth. Nevertheless, it 
still fills a typical page better than Canters’s apple-shaped 
frame, and the lack of the concave bends make it a more 
reasonable solution for practical cartography. Although ac-
cording to my own aesthetic taste, further correction of 
the outline is unnecessary in this case; if one needs a more 
“elliptical” outline, it should be possible to combine the 
method presented in this paper with the outline reshaping 
method of Györffy (2018).

As a final thought, the present study shows that after a 
wise choice of design criteria, optimal map projections of 
the earth do not always look unnatural. The results of the 
optimization presented here may be used as-is in practical 
cartography.
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