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HOW PRACTICAL ARE MINIMUM-ERROR 
MAP PROJECTIONS? 

Ever since the Mercator projection gained wide acceptance for general 
geographic world maps, there have been attempts to replace it because 
of its serious area dis tortion. Most minimum-error projections, how
ever, are difficult or nearly impossible to construct without a modern 
computer. Does this negate their use? The answer is probably yes if 
most users need to d igitize maps or do their own programming of 
formulas, but no if the goal is to make the map eas ier for measurement 
of distance, area, and shape. We too often s till choose projections to 
suit pre-computer criteria involving ease of cons truction, rather than to 
meet the needs of the map user. This paper reviews the practicality of 
minimum-error map projections and illustrates a wide range of mini
mum-error projections. 

M aking a flat map resemble the round world has been a goal through 
the years for map makers. The smaller the region being portrayed, 

the more the flat map can look like that part of the globe. When the 
portion is decreased to a province or town, the distortion is often so small, 
although cartographically significa nt, that it can be perceived only by 
measurement, not by appearance. The differences among map projec
tions are most evident when comparing various world maps. 

The classic .,,vorld map is of course based on the Mercator projection 
(Figure 1), presented in 1569 by the Flemish map maker Gerard us 
Mercator as a navigational aid, not as a general world map. With the 
importance of navigation, especially during the 15th and 16th centuries, 
the Mercator projection gained such high visibility that it became the 
standard for maps of world geography and has never really lost that role. 
Cartographers have regularly decried its general use, writing in promi
nent technical books of the past century, but it is so entrenched that Arno 
Peters had ferti le ground for attacking the Mercator's gross area distortion 
as a basis for independently re-presenting Ga ll 's hundred-year-old 
Orthographic Cylindrical projection (Figure 2), wi th the implication tha t 
Peters' approach was the first equal-area solution to supplant the 
Mercator. 

Peters' presentation, beginn ing in 1973, was only the most vocal of 
several attempts to counteract the area distortion of the Ylercator projec
tion. se,·eral innovators explicitly stated that their world map projections 
were attempts to resemble the Mercator with less distortion: Gall's 
Stereographic projection of 1855 (Figure 3), Van der Grinten's circular 
projection of 1898 (Figure 4), and O.M. Miller's "modified Mercator" 
cylindrical of 19-12 (Figure 5) are familiar examples. These compromise 
projections made no claim to minimum error; they tried to reduce the 
visual distortion. Further steps were taken by numerous inventors who 
retained straight, parallel lines of latitude, but who curved the meridians, 
producing what are generally called pseudocylindrical projections. The 
area sca le is frequently true throughout the world map, but angles and 
shapes are often badly distorted. The Sinusoidal projection (Figure 6), the 
Mollweide projection (Figure 7), and Eckert's Nos. 4 and 6 (Figures 8 and 
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Figure 1. Mercator pn>iectio11 . 

Figure .J. Va11 der Gri11te11 projectio11. 

Figure 7. Mo//uieide projectio11. 

Figure 10. Goode Ho1110/osi11I' projection. 

'------------------ - -------

Figure 2. Gall Orthographic (Cyli11drical Equal
Area) projection. 

Figure 5. Miller Cyli11drical projectio11. 

Figure 8. Eckert IV projectio11. 

Figure 11. Robi11so11 projection. 

Figure 3. Gall Stereograpl1ic projt•ction. 

Figure 6. Si1111soidal projectio11. 

Fig11re 9. Eckert VI projectio11. 

Figure 12. Eisenlohr projectio11. 
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9) are all equal-area. Geode's Homolosine (Figure 10) is also equal-area, 
but us ing interruptions he reduced the shape distortion. Interruption has 
its drawbacks, and Arthur H. Robinson designed what is now probably 
the best-known compromise pseudocylindrical in 1963 (Figure 11) for 
Rand McNally; it is neither interrupted nor equal-area . Rand McNally 
used the projection on a limited basis, but when the National Geographic 
Society adopted it in 1988 with an effective press conference, it became far 
better known. 

There have been minimum-error world map projections, however, 
beginning a few decades after the development of minimum error as a 
mathematical concept in the early 19th century.1 When applied to map 
projections, innovators soon found that the concept had to be applied 
narrO\·vly. In 1870 Eisenlohr presented a minimum-error conformal 
world map projection by figuring out how to have the scale constant all 
around the edge of the map. The only problem is that the map (Figure 
12) looks a·wful. A conformal map projection is one on which all small 
shapes and local angles are shown correctly. The Mercator is one ex
ample. In 1910 Behrmann presented a cylindrical equal-area projection 
with what he determined to be as little distortion of angles as possible, 
but it (Figure 13) is only a slight improvement over the Gall-Peters 
projection. With computers available to do the mathematics, there have 
severa l attempts since 1980 to develop minimum-error world maps which 
are neither conformal nor equal-area by Peters' son Aribert in Germany, 
by Canters in Belgium, by Laskowski in the U.S., and by others. So far 
they remain academic, lacking commercial application. 

There is much more justification, however, for minimum-error regional 
map projections. The Russian mathematician Chebyshev had theorized 
in 1856 that a conformally mapped region bounded by a line of constant 
scale has the least overall error, or is minimum-error. If the region is 
circular, this is achieved with an azimuthal projection, because the 
projection of the globe onto a plane tangent at the pole (Figure 14) or 
some\vhere else (Figure 15) produces an azimuthal projection on which 
lines of constant distortion are circles centered on the point of tangency 
(Figure 16). Chebyshev's theory was later proven, and it was applied in 
effect by Eisenlohr to his world map projection and by others in the 20th 
century to several projections used 
for map regions bounded by a 
rectangle or consisting of a particu
lar landmass. In 1926 Laborde 
applied it to topographic mapping 
of the island of Madagascar, in 1953 
O.M. Miller used the principle for 
an Oblated Stereographic projection 
of the combined continents of 

1 TI1e concept of minimum error is closely 
tied to that oi least squares, developed by 
mathematicians Gauss and Legendre earl~· 
in the 19th century. This principle states 
that the be~t ,·alue for a quantity, given a 
set oi measurements of that quantity, is the 
value for which the sum oi the squares oi 
deviations oi these measurements from 
this \·alue is least. For a minimum-error 
map projection, the sum of the squares of 
the de,·iations of all the actual scale ,·alues 
from the stated scale is made a minimum 
according to a prescribed definition. 

Figure 14. Conce,1t for a polar a:i11111t/1al 
projection. 

Figure 13. Bl'i1nr1ann Cylindrical Equal-Area 
projection. 

REGIONAL MAPS 

Figure 15. Concept for an oblique azi11111t/1al 
project ion. 
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Fi_-.:1m• 16. 01>/ique Stt'm>gmphic 11roil'ctio11. 
1citl1 lint';. <f <011;.tant scal1•f11ctor !1.1, 1.1. 1.3!. 

F1g11n• 17. lvli/ler Ol•lated Stcm1gmJ'lnc 
1m11,•ctim1 for E11rOJ'I' 1111d Afnca. 1c1t/1 li11e; of 
co11,;/1111t :;~·alt'fartor <0.94. 1.00. 1.08!. . 

Modified-Stereogm11lnc Co11/or111al projection 
for A/11sk11, il'i/'11111/ lines of cm1Mm1t scale 
factor. 

Europe and Africa (Figure 17), and it was later used, as computers facili
tated the handling of more complicated equations, by Reilly for New 
Zealand, and in my development of low-error map projections for Alaska 
(Figure 18) and for the "lower-48" States (Figure 19). 

The most recent application was published in 1992 as the Optimal 
Conformal projection developed by physicist Mitchell Feigenbaum for 
Hammond Inc. and used for the continental maps in the new Hn111111011d 

Atlas of the World. In the Hammond maps, the bounding line roughly 
follows the continental coastlines, including related islands, and the maps 
were reasonably touted as "the most distortion-free that can ever be 
made," although the words "conformal maps" should really be inserted, 
and calculations are extremely complicated. 

The Chebyshev principle appears to be applicable to equal-area map 
projections, although 1 haven't heard of an analytical proof, and I have 
used it to de,·elop an Oblated Equal-Area projection for oval (Figure 20) 
and rectangular (Figure 21) regions. John Dyer developed formulas to 
apply the minimum-error concept to irregular regions, and I applied his 
system to Alaska (Figure 22). 

As with world maps, arbitrary or compromise projections, neither 
equal-area nor conformal, can also be developed for regions on a mini
mum-error basis. George B. Airy in 1861 was the first with a minimum
error azimuthal projection (Figure 23) which looks very much like an 
Azimuthal Equidistant projection. A century later, Bomford of England 
and later Ginzburg of the Soviet Union (Figure 24) devised low-error 
compromise versions to suit rectangular or oval regions. Tobler devised 
an Optimal projection of the 48 States, minimizing scale variation between 
all the intersections of a 5° graticule of meridians and parallels. 

If we are talking about a map of a full hemisphere, with a meridian, the 
equator, or an oblique great circle as its circular boundary, the solution is 
straightforward. The projection will be azimuthal, as discussed previ
ously, and the minimum-error equal-area projection is the Lambert 
Azimuthal Equal-Area (Figure 25), the minimum-error conformal projec
tion is the Stereographic (Figure 26), and the minimum-error projection in 
general is that by Airy. 

Figun' 18. Modi(il'd-Stcn•ogmplnc C01~for111al J'rojcctwn for Alaska, witli lines of co11sta11t scale factor . 

...._ _______________ - - -
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The improvement obtained by using minimum-error projections varies 
considerably with the circumstances. For world maps, the use of the 
"minimum-error" Eisenlohr projection with its two large cusps may be 
rejected e\'en over the \itercator almost out of hand, because of appear
ance. Minimum-error maps of hemispheres, just discussed, are standard 
and quite satisfactory in appearance. For regional maps, appearance is 
much less of a factor because e\·en a large continent looks much the same 
on any of se,·eral good projections. When the region is the size of the 
United States or smaller, the choice among good projections makes almost 
no visual difference, but the range of scale can vary significantly. This 
variation can be quantified in different ways. Two useful measures of this 
variation are (1) the maximum and minimum values of the scale factor 
o\·er a map, and (2) the root-mean-square error or RMSE of the scale 
factor. Although calculating the RMSE gives the computer a little math
ematical '"''orkout, the concepts involved are not very complicated. 

The scale factor on a map is the ratio of the actual scale at a given place 
to the nominal scale of the map. That is, if the nominal scale of the map is 
1/ 250,000 or about 3.95 miles to the inch, and the sca le at a particular 
place on the map is 3.85 miles to the inch, then the scale factor at that 
point is 0.976. The scale "error," so-called, although it isn't an error as 
much as just the way flat maps work, is then (1-.976) or 2.4%. If we take 
all these scale errors for small equal portions of the map, square them, 
add up the squares, divide by the number of measurements, and find the 
square root of the quotient, we get the root-mean-square error for the 
scale factors on the map. The mathematician Gauss found in the 1820s 
that this is an excellent measure of the overall error of a map or of many 
other sets of measurements, and that the lower, the better. Depending on 
the distribution of scale, the range between maximum and minimum 
values may not be least when the RMSE is least. 

Applying these concepts to a specific case, we can first divide the land, 
islands, and adjacent waters of North America into about 240 quadrangles 
5° of latitude x 5° of longitude in size, giving each a weight in proportion 
to its area on the Earth. Several world atlases use the Lambert Azimuthal 
Equal-Area projection for maps of this continent. If this projection is 
used, with the best possible center for these 240 quadrangles, the result is 
-1.5°0 for the RMSE or mean scale factor error, and a range of scale factors 
from 0.92 to 1.09, or 17°0. With an Oblated Equal-Area projection, the 
RMSE drops from 4.5°'o to 3.3%, and the range is 14% instead of 17%. In 
other words, the true scale of the map is generally about 3.3% from the 
nominal scale on the Oblated Equal-Area, and about 4.5% on the Lambert 
Azimuthal Equal-Area. The resulting general improvement in scale error 
is a moderately significant 27°0, although the extremes are only 18% 
closer. Because \!orth America is more elongated than most other conti
nents, the improvement using the Oblated Equal-Area projection rather 
than the Lambert is much more pronounced for 'orth America. There
fore, in a recent selection for use in equal-area continental land-use maps 
by the C.S. Geological Survey's EROS Data Center at Sioux Falls, the 
Oblated Equal-Area was recommended for North America, and the 
Lambert was recommended for the rest of the continents. 

If the region is reduced in size to the 48 conterminous united States, 
using almost a thousand 1° x 1° quadrangles of lat / long for the calcula
tions, a suitable Oblated Equal-Area projection gives an RMSE of 0.81 % in 
scale factor error and a range of 2.8%, while the commonly used Albers 
Equal-Arca Conic has a mean error of 1.02% and a range of 3.1%, an 
improvement using the Oblated Equal-Area of 21% in mean error, and 
lO'X, in range. In this case, the improvement is moderately good, but the 

ANALYS1S 

Figure 19. Modified-Stl'reograp/11c Co11formal 
projcct1011 fi•r 48 U11ited States, witlr Imes of 
co11sta11t sen le fac tor f.99. 1.00. 1.011 ). 

Figure 20. Oblated Eq11al-Area projec/1011 for 
Atlm1t1c Omm <Pitlr /111;::; of co11sta11t max. srnle 
factor n.02. 1.05, 1.10. 1.15). 

Figure 21 Oblaft'd E1111a/-Area projection for 48 
U11 ited 5111/t'~;, ;pit/1 li11es of co11sta11t max. ~cnle 
factor (1.m. 1.0125, 1.015). 
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F1surt' 22. Low-Error Eq1111/-Art'a prtlft"Clion for 
Alaska, il'il/1 /i11e5 (~f co11s/1111 / 111ar. >rnlefador. 

F1s11re 23. A1ry Mmi11111 111-Error A:i111 11tl111/ 
projt'd1011 fo r iit'll1isphae a•11tat'd 011 \Vnshi11g
to11, D.C. 

CONCLUSIONS 

Fig11re 24. Gi11:b11rg P&•11tfon:i11111tlwl 
pro;ectio11 f•" At/1111/ic Ocen11. w1th oml li11t's of 
co11sta11/ 11111xi11111111 a11g11/11r dislorlio11 (5 °, 10 °, 
15 ', 20 °). 

scale is within 3% of the nominal 
scale anyway at any given point 
using either projection. To 
recommend a change of projec
tion for the 48 States is hardly 
worthwhile. 

With a region reduced to say a 
10° x 10° quadrangle centered at 
40°N. latitude (which is a region 
30% longer in a north-south 
direction than east-west because 
of the narrower degrees of 
longitude) a Lambert Azimuthal 
Equal-Area projection, ideal for 
circular regions, is 60% better in 
mean error than an Albers, which 
is better for eas t-west regions, and 
the range is about 30°'0 better. 
But, we are only talking about a 
scale factor ranging less than .5% 
within the entire quadrangle. A 
1° x 1° quadrangle shows about 
the same RMSE improvement, but 
the scale factor range is 100 times 
closer to 1. 

In conclusion, the choice of a map 
projection should be based on 
several criteria: the purpose of the 
map, the shape and size of the 
region being mapped, and 
whether the particular map is part 
of an established series or is to 
stand alone. For a new stand
alone map of a region, a mini
mum-error projection is clearly 
mathematically "better" than a 
projection that is not minimum
error. If all users are going to rely 
solely on the nominal map scale 
for measurement and will not be 
digitizing, and if the map maker 
can use the formulas for a mini
mum-error projection or sofhvare 
containing them to construct the 
map, then such a projection can 
be recommended for a region 
with a size of the order of North 
America. If these criteria are not 
met, the improvement in accuracy 
is probably offset by the math
ematical complications, both in 
plotting, scale determination at a 
given point, or digitizing. In spite 
of the pervasiveness of comput
ers, we still need to understand 
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the map projection we arc using. 
Projections are considered confus
ing enough by many cartographers 
because of the amount of math 
invuh ed. A map used fur dCCUrdte 

measurements must have a known 
projection, and it is necessary for 
the user to become familiar with 
the projection used. With all the 
tools, especially computers, 
a\·a ilable to us, we should not limit 
ourselves to pre-computer criteria 
in choosing the projection to be 
used, but we should know the pros 
and cons im·oh·ed in the choice of 
a more complicated projection. 

For further details and references see: 

Figure 25. Oblique La111bat A:i11111tltnl £q11nl· 
An•a proiecf1<111 for lte111ispltere cc11ft•ro:d 011 
\Va.;/ti11gto11. D.C. 

Snyder, J. 1987. Map Projectio11~ -A Working Ma1111al. Washington: U.S. 
Geological Sun·ey Professiona l Paper 1395. 

__ . 1993. Flatte11i11g tltt! Earth: Two Thousand Years of Map Projections. 
Chicago: Cniversity of Chicago Press. 

El proyector r--1ercator ha ganado amplia aceptaci6n para la proyecci6n de 
mapas geograficos mundiales, pero han habido intentos de reemplazarlo 
debido a la seria distorsi6n de! area. Sin embargo, la mayorfa de errores de 
proyecci6n, son muy diffciles o casi imposibles de detectar sin un computador 
moderno. :-.Jiega es to su uso? La respuesta probablemente es sf, si la mayorfa 
de usuarios necesitan digitalizar ma pas o hacer su propia programaci6n de 
formulas, pero no, si la meta es hacer el mapa mas facil en medidas de 
distancia, area y forma. Nosotros todavfa con frecuencia escogemos 
proyecciones que se ajustan al cri terio pre-computarizado que ofrece facilidad 
en la construcci6n, a cambio de suplir las necesidades del cart6grafo. Este 
trabajo repasa la practicalidad de proyecciones de ma pas con errores mfnimos 
e ilustra una amplia variedad deejemplos de proyecci6n de errores mfnimos. 

Depuis que la projection Mercator a re<;u un accueil favorable du monde de 
la cartographie generale, des tentatives ont ete faites dans le but de la 
remplacer a cause de la severe deformation regionale qu'elle entraine. La 
plupart des projections a erreur minimum, cependant, sont difficiles, meme 
presqu'impossibles a construire sans !'aide d 'un ordinateur modeme. Est-ce 
que cela nullifie leur uti lite? La reponse est probablement affirmative si la 
plupart des utilisateurS Ont a convcrtir lescartes en numerique OU a program
mer eux-memes leurs formules; elle est negative si le but est de faciliter sur 
la carte la mesure de la distance, de la region et de la forme. Trop souvent, 
nous con tin uons a choisir des projections qui respecten t !es criteres an terieu rs 
a !'ere de l'informatique qui impliquent la facilite de construction, au lieu de 
repondre aux besoins de l'utilisateur de la carte. L'article passe en revue les 
aspects pratigues des projections de cartes a erreur minimum et illustre unc 
large gamme d'exemples de projections de ce type. 

f1g11n• 26. Obl1q11e Strrt'ograp/11c pro11•ctio11 for 
lte111isplten• n•11tcred 011 \Vaslti11gto11. D.C. 
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