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INTRODUCTION

Isometric mapping, while highly uncertain, continues to be a preferred 
mapping method for continuous data in many of the physical and social 
sciences. Isometric method-produced uncertainty refers to the various 
map representations that result when different methods and/or specifi-
cations are used in the mapping process. This paper examines ways to 
communicate the nature and magnitude of isometric method-produced 
uncertainty to map readers so that they are encouraged to be uncertain 
when it is warranted. As a case study, we consider an extensive set of 
plant hardiness zone maps that result when different interpolation 
methods and sampling resolutions operate on the same set of data. Our 
results show that slightly different choices in the mapping process can 
result in very different looking isometric maps, and suggest that the 
manifestations of method-produced uncertainty are not as systematic, or 
straightforward, as suggested by interpolation accuracy assessments. We 
then explore the use of two existing visualization techniques, flickering 
and transparency, to communicate the nature and magnitude of isomet-
ric method-produced uncertainty. 

Key Words: Map uncertainty, isometric mapping, map animation, visual-
ization

he fact that one can never be certain about the precision or accuracy 
of maps, nor their underlying data, is inextricably bound to cartogra-

phy. As is the case with any other communication medium, mapping is 
afflicted with misconceptions, misinterpretations, mistakes, and method-
produced error.  A great deal has been written and published about car-
tographic uncertainty, at times using synonyms such as accuracy, quality, 
error, and reliability (e.g., Buttenfield, 1993; Hunsaker et al., 2001; Hunter 
and Goodchild, 1996; MacEachren et al., 1998). Quite often, uncertainty 
is posed as not just an inherent product of map making, but as a ‘quality’ 
which has negative impact, and as an explanation for some of the frail-
ties of maps. In that sense, uncertainty is an unavoidable byproduct of 
mapping geographic reality at scales that demand reduction in certainty, 
among other things. None of this is news to cartographers, but it may be a 
revelation to people who use our maps.

Cartographic uncertainty exists as one of the costs we incur in map 
visualization, but map users are rarely encouraged to feel uncertain about 
the maps they view. We often lecture students in our classes about map 
fallibilities, and we may write about numerical expressions of error or 
reliability. That said, it would be understandable if cartographers expected 
the public to have an inbuilt wariness of maps.  However, this is probably 
not the case because map readers are not usually informed in an explicit 
way that maps have shortcomings that can’t be entirely remedied. In the 
case of this research, we maintain that people who read maps are not 
normally instructed about the meaning of uncertainty, or how to under-

“Cartographic uncertainty
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incur in map visualization, but 
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stand uncertainty. The goal of this paper is to examine some possible ways 
to inform map readers visually about uncertainty using static as well as 
animated techniques. 

Method-Produced Uncertainty in Isometric Mapping

Isometric mapping has a strong tradition and extensive history in the 
social and physical sciences, and is a preferred method for mapping 
distributions of continuous phenomenon measured with interval or ratio-
scaled data (see Robinson, 1961). In isometric mapping, real data values, 
or control points, are used to develop a three dimensional surface that is 
visualized by two dimensional quantitative line symbols. While once a 
manual process, the majority of contemporary isometric maps are created 
using computer-based methods (Dent, 1999; see also Mulugeta, 1996). In 
automated interpolation, a continuous grid of data values is derived from 
a non-continuous distribution of control points. Following interpolation, 
isolines are placed according to specified intervals.

While all maps have uncertainty, the uncertainty associated with iso-
metric mapping is exacerbated by the fact that the majority of data values 
shown on a map are estimated from a limited number of control points. 
Furthermore, isometric maps tend to be very unstable, with different iso-
line placement when different techniques or specifications are applied to 
the same set of control points (see MacEachren and Ganter, 1990).  To date, 
most treatments of isometric uncertainty have focused on map error. For 
example, Morrison (1971) defined three sources of method-produced error 
in isarithmic mapping: (1) the number of control points used, (2) the distri-
bution of those control points, and (3) the interpolation method. Similarly, 
Robinson et al. (1995) defined several additional sources of error relating 
to data quality, class interval assignment, and the implied accuracy of the 
mapping concept itself. 

By isometric method-produced uncertainty, we mean the various map 
representations that can result when different methods or specifications 
are used to map a given set of data. We use the term uncertainty, rather 
than error, because the majority of locations on a statistically derived 
surface cannot be validated. Consequently, the amount of error on a par-
ticular map will never truly be known. We suggest that method-produced 
uncertainty is manifested in three different but related ways: (1) interpola-
tion accuracy, (2) visual stability, and (3) information stability, as discussed 
below.

Interpolation Accuracy
We use the term interpolation accuracy in reference to the extent that an 
interpolated surface deviates from the original set of control points. The 
majority of research concerned with interpolation accuracy has focused 
on assessing different interpolation methods in light of statistical accu-
racy. These studies have used several techniques, such as cross-validation 
(Isaaks and Srivastava, 1989), true validation (Voltz and Webster, 1990), 
and a variety of summary statistics to evaluate the accuracy of interpo-
lated surfaces. Some early studies include Morrison’s (1974) assessment of 
various interpolation methods and Dubrule’s (1984) comparison of splines 
versus kriging for estimating well depth. Other studies conducted by 
soil scientists were concerned with the accuracy of different interpolation 
methods for predicting soil characteristics, such as moisture capacity (Van 
Kuilenburg et al., 1982), pH (Laslett et al., 1987), and clay content (Voltz 
and Webster, 1990). More recently, Declerq (1996) evaluated the accuracy 
of several interpolation methods using control point distributions with 
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very different characteristics. By and large, these studies have shown that 
kriging and inverse distance weighting (IDW) tend to minimize interpola-
tion error, but that results will vary depending on the nature and distribu-
tion of control point data. 

Visual Stability
Visual stability is related to the concept of map stability (Muehrcke, 1990). 
It refers to the extent that visually detectable differences are found be-
tween isometric maps when different interpolation techniques or speci-
fications are applied to the same set of control points. Visual stability is 
based on the premise that greater variability is associated with greater 
uncertainty as to which map best portrays a particular geographic phe-
nomenon. Visual stability is scale dependent because differences that are 
visible at a large scale may be virtually indistinguishable as scale becomes 
smaller. For example, MacEachren and Ganter (1990) compared the visual 
stability of isoline and three-dimensional fishnet patterning when differ-
ent sampling resolutions are applied to the same set of data. They found 
that patterning with isoline representations tends to be much less stable 
than with fishnet representations, and suggested that climatologists might 
benefit from using an alternative visualization method for representing 
their data.  

 
Information Stability
By information stability, we mean the extent that the information shown 
on an isometric map changes when different interpolation techniques or 
specifications are applied to the same set of data. Information stability 
is similar to visual stability, but is not scale dependent if information is 
extracted from the map using non-visual techniques. Information stabil-
ity is especially important when isometric maps are used in a Geographic 
Information System (GIS) for vector overlay, for coding point locations, 
or when they are viewed using an Internet Mapping Server (IMS), where 
users may have the ability to view maps at inappropriately large scales. 
For example, if point is located over a data island that is not visible at 
an intended scale, the point will be coded according to that data island, 
despite its size or visibility.

Communicating Isometric Uncertainty

Despite the ambiguities discussed above, isometric mapping continues to 
be a preferred mapping method for many physical sciences, particularly 
in the fields of climatology and meteorology (see Dibiase et al., 1994). Map 
makers seldom, if ever, convey the nature and magnitude of method-pro-
duced uncertainty to map users, and this is especially problematic when 
isometric maps are used as a primary analytic tool (see MacEachren and 
Ganter, 1990). 

Summary statistics, such as Root Mean Square Error (RMSE), are typi-
cally used to communicate interpolation accuracy (USGS, 1997). However, 
a number of problems arise when a single summary statistic is used to 
communicate the uncertainty associated with a particular map. First, sum-
mary statistics do not indicate how uncertainty is distributed from place-
to-place. For example, Shortridge (2001) noted that a single portion of a 
digital elevation model could account for the majority of error reflected 
in a summary statistic. Second, two maps generated from the same set of 
control point data can have similar accuracy values, but show very dif-
ferent patterning (Declerq, 1996). Even when control points are removed 
from the sample for subsequent validation, interpolation accuracy remains 

“Visual stability . . . refers to 
the extent that visually
detectable differences are found 
between isometric maps when 
different interpolation
techniques or specifications are 
applied to the same set of
control points.”
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a statistically informed guess. Finally, summary statistics generally esti-
mate the accuracy of an interpolated grid and do not necessarily account 
for uncertainty in isoline placement. Map users rely on the position of 
isolines to extract information, not on the gridded surface that has been 
evaluated.

Very few alternatives to summary statistics have been proposed to 
express method-produced uncertainty in isometric mapping. A notable 
exception includes Robinson et al.’s (1995) suggestion of using isoline 
smoothing to promote wariness about the accuracy of line placement. 
They discussed this technique in the context of conceptual error, or “the 
validity of the concept presented by the map” (Robinson et al. 1995:514-
515). As an example, they considered an isometric map representing the 
distribution of mean temperature data and suggested that “Cartographers 
can overcome the effects of these errors and inconsistencies from one part 
of an isarithmic map to another by smoothing the isarithms” (Robinson et 
al. 1995:515). Also related, but not specific to isometric mapping, is van der 
Wel’s (1993) use of sliders to visualize uncertainty thresholds for categori-
cal boundaries via line width and blurring (see MacEachren 1995:443) and 
Hengl et al.’s (2004) visualization of interpolation uncertainty using differ-
ent confidence thresholds.

Given the reality of method-produced uncertainty in isometric map-
ping, it is important to understand this uncertainty, and to communicate 
its existence and extent to map users, especially if a map is used for 
analytic purposes, or to assist in policy decision-making. And therein lies 
the challenge. Exactly how are we to present the notion and magnitude of 
isometric uncertainty to map users? How can we facilitate the appropriate 
use of the isometric maps that we make? The purpose of this research is to 
examine the use of existing visualization techniques for communicating 
isometric uncertainty in order to inform map readers about how to inter-
pret a particular map. The techniques that we consider include (1) flicker-
ing and (2) transparency, as discussed below. 

The technique of flickering, attributed to MacEachren (MacEachren et 
al., 1993), draws from the concept of alternating syntagms, where differ-
ent attributes of the same place are alternately displayed in register (see 
Monmonier 1992). Flickering, as applied by MacEachren (1995), involves 
the use of non-temporal animation to alternate between two or more maps 
so that a map reader can consider multiple pieces of information simul-
taneously. As an example of how flickering can be used to communicate 
uncertainty, MacEachren (1995) considered dissolved nitrogen surfaces 
for the Chesapeake Bay over a six-year period. He suggested that for each 
month, maps can be generated using different interpolation methods and 
“when these flickering images are run in sequence as an animation, they 
should provide both a reliability assessment of maps at each time period, 
and a way to assess changes in pattern stability over time” (MacEachren 
1995, 447). We use the technique of flickering in a similar way, that is, to 
assess and visualize uncertainty in isometric boundaries when different 
interpolation techniques are applied to the same set of data. 

The technique of using transparency to communicate uncertainty draws 
from MacEachren’s visual variable “focus” (MacEachren 1992), which he 
later described in terms of “clarity” (MacEachren 1995). MacEachren sub-
divided clarity into three visual variables, including crispness, resolution, 
and transparency. The term transparency, when used to visualize uncer-
tainty, refers to a “fog” that differentially obscures the map theme based 
on data uncertainty (see MacEachren 1992:15). Rather than using a trans-
parent fog to mask uncertain portions of a map, we use transparency as a 
technique to simultaneously display alternate isometric maps that result 
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when different interpolation techniques and parameters are applied to the 
same set of data. In what follows, we apply these two techniques to see if 
they are useful for exploring and visualizing method-produced uncertain-
ty in isometric mapping. First, however, it is necessary to investigate the 
various manifestations of isometric uncertainty for a particular set of data. 

As a case study, we consider an extensive set of plant hardiness zone 
maps that result when different interpolation methods and sampling reso-
lutions operate on the same set of control points. The most fundamental 
choices that affect the outcome of an isometric map are the selection of an 
interpolation method and gridding interval. Gridding interval refers to the 
distance separating nodes on an equally spaced grid used for interpola-
tion. Kriging and IDW are considered here because they have been shown 
to perform better in terms of interpolation accuracy and are the most com-
mon methods used (see Lam, 1983).

Plant Hardiness Zones

Plant Hardiness zone maps, intended to assist the public in planting 
appropriate vegetation, are found in a variety of textbooks, growing 
manuals, and classrooms throughout North America. Currently, the most 
widely used plant hardiness zone map was issued in 1990 by the USDA 
(Cathey 1990), and uses isolines to divide hardiness zones according to 
average annual low temperatures. This map is similar to previous versions 
(e.g., USDA, 1960) that follow hardiness zone map conventions. These 
conventions include (1) the use of average low temperatures recorded by 
weather stations to define hardiness zones, (2) the use of ten plant hardi-
ness zones based on isolines placed at 10˚ F intervals, and (3) the use of 
a spectral color scheme to distinguish between ordinal hardiness zone 
values. We recognize that the use of alternative methods, such as incorpo-
rating elevation data, might improve the accuracy of hardiness zone maps 
(see Veve, 1994). However, our intent is not to develop better methods for 
making hardiness zone maps, but rather, to investigate ways to explore 
and communicate method-produced uncertainty in hardiness zone maps 
that have been created using conventional means.

For this study, we consider average annual low temperature readings 
archived by the National Climatic Data Center for 4,799 weather stations 
located within the conterminous United States (Figure 1). The average 
annual low temperature readings are based on temperature extremes from 
1990 to 2000, with the number of observations ranging from 2 to 11 years 
for individual weather stations. The positional accuracy of control points 
is limited to 0.01 degree latitude and longitude. The distance between 
control points, as determined by Delaney triangles, varies from 1.8 to 385.3 
km, with spacing between control points generally being greater in the 
mountainous west. The mean distance between control points is approxi-
mately 46 km.

With these data, a total of 354 plant hardiness zone maps were created 
in Surfer 7 (Golden Software 1999): 177 maps using kriging, and 177 maps 
using IDW. For each interpolation method, all default options were ac-
cepted, with the exception of the gridding interval. The default option in 
Surfer 7 uses ordinary, point kriging, and considers all of the control point 
data for interpolating each grid node. The default option relies on a linear 
variogram model taking the following form (Golden Software, 1999):

“As a case study, we consider 
an extensive set of plant
hardiness zone maps that result 
when different interpolation 
methods and sampling
resolutions operate on the same 
set of control points.”

“. . . a total of 354 plant
hardiness zone maps were
created . . .”
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( ) hSCh ⋅+= 0γ

where

( )hγ  	 is the semivariance
C0 	 is the unknown nugget effect
S 	 is the unknown slope
h 	 is the lag distance
 

The IDW option in Surfer 7 defaults to a weighting power of 2, with no 
smoothing. Like kriging, all control points in the default option are consid-
ered for interpolating each grid node. The equation for IDW is as follows 
(Golden Software 1999):

For each method, 177 interpolated grids were created, each employing 
a different gridding interval ranging from 100 km to 1 km (Table 1). From 
100 km to 23.3 km, all possible intervals allowed by Surfer were used. A 
sample of grid sizes were selected at 1-km increments for gridding inter-
vals smaller than 23 km, because using every possible interval after that 
point would have required an overwhelming amount of production time 
with very little gain in information. For each interpolated grid, an isomet-
ric map was made in Surfer following plant hardiness zone map conven-
tions. 

Exploring Method-Produced Uncertainty in Plant Hardiness Zone Maps
 
As discussed at the outset, method-produced uncertainty in isometric 
maps is manifested in at least three different but related ways, including 
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Figure 1. Location of 4,799 weather stations considered for plant hardiness zones.

interpolation accuracy, visual stability, and information stability. Here, we 
explore method-produced uncertainty in plant hardiness zones given dif-
ferent choices in interpolation method and gridding interval.

Interpolation Accuracy
We evaluated the accuracy of each interpolated grid by computing RMSE 
values based on the difference between predicted and known tempera-
tures for each of the 4,799 control points. RMSE values report the stan-
dard deviation of residuals (the difference between known and predicted 
values), and provide an estimate of how well an interpolated grid cor-
responds to the data used to create it. While a variety of summary statis-
tics have been used to evaluate interpolation accuracy, we chose RMSE 
because it is relatively easy to compute, and significantly easier to under-
stand than other methods. 

RMSE is derived using the following equation:
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where:
yi	 is the predicted temperature value
yj	 is the known temperature value
N	 is the number of sample points 

Table 1 reports the RMSE values generated for each interpolated grid. 
RMSE values decrease in a systematic, non-linear manner, with interpola-
tion accuracy decreasing more rapidly as gridding intervals become finer 
(Figure 2). Figure 3 shows the distribution of residuals for selected grid-
ding intervals, further emphasizing this trend.

There are several ambiguities in using this method to estimate inter-
polation accuracy. Because kriging and IDW, as applied here, operate as 

“We evaluated the accuracy of 
each interpolated grid by
computing RMSE values based 
on the difference between
predicted and known
temperatures for each of the 
4,799 control points.”
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exact interpolators, grid nodes occurring at the same location as control 
points will be assigned the same value as the control point (Lam, 1983). 
If a substantial number of grid nodes co-occur with control points, RMSE 
values will tend to underestimate interpolation error. While RMSE does 
not provide an exact indication of interpolation accuracy, fundamental 

Table 1. RMSE values for kriging and IDW by gridding interval and animation frame number. The 
animation frame number refers to individual frames in Animations 1-3 (see Animations 1-3; Figure 2.)
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Figure 2. Scatter plot showing relationship between RMSE and gridding interval for kriging and 
IDW.

problems exist with all accuracy statistics that rely on the same set of data 
used for interpolation.

To see if the differences in interpolation accuracy between kriging and 
IDW are statistically significant, we performed a series of two-sample 
t-tests. The t-tests evaluate the null hypothesis that average error, or mean 
deviation, between the Kriging and IDW grid is similar. By average error, 
we mean the average difference between known values and predicted 
values on the interpolated surface. Figure 4 is a scatter plot diagram show-
ing the t-test results by gridding interval and significance (p) value. The 
t-statistics report the strength of the difference in average error between 
Kriging and IDW. The graph shows that the strength of differences in-
creases from 100 km to ~30 km, and then decreases dramatically until ~11 
km. From 10 km to 1 km, the strength of difference rises dramatically. At 
the 0.05 significance level, these differences are statistically significant for 
gridding intervals ranging from 72 km to 14 km and gridding intervals 
ranging from 8 km to 1 km. The difference in average error is not statisti-
cally significant for gridding intervals ranging from 100 km to 73 km and 
for gridding intervals ranging from 13 km to 9 km. As can be seen in Fig-
ure 4, the majority of paired gridding intervals show statistically signifi-
cant differences between Kriging and IDW interpolations. 

Although statistical significance provides a numerical measure of differ-
ences, it does not provide information about how map users may cognize 
visual patterns shown on isometric maps. Although it is beyond the scope 
of this research, it would be useful, for example, to empirically examine 
human responses to the visual effects of different gridding intervals. In 
this sense, subjects could compare frames for detectable differences they 
may see. The results of such an experiment could then be used in con-
junction with the RMSE and t-test results to present both a statistical and 
cognitive view of isometric map patterns.

“Although statistical
significance provides a
numerical measure of
differences, it does not provide 
information about how map
users may cognize visual
patterns shown on
isometric maps.”
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Figure 3. Distribution of the residuals (difference between predicted and observed values for each of 
the 4,799 weather stations) used for calculating RMSE for selected gridding intervals. a) Gridding 
interval is 100km.  b) Gridding interval is 50 km.  c) Gridding interval is 1 km.

Visual Stability
We display and evaluate visual stability in plant hardiness zones using the 
techniques of flickering and transparency. First, a non-temporal animation 
was created using Flash MX (Macromedia Corp. 2002) showing the hardi-
ness zone boundaries for each interpolation method by gridding interval 
(Animations 1-3 [http://www.nacis.org/index.cfm?x=24]). The sequence 
is separated into three animations because of excessive file size. Compres-
sion was not used because we did not want to alter the original line geom-
etry as determined by Surfer. The interface provides basic controls to play, 
stop, pause, and advance the animation sequence. We evaluated visual 
uncertainty by viewing the animation on a computer monitor at a scale 
of ~1:22,000,000, paying specific attention to line movement as gridding 
intervals decrease. Using this technique, visual uncertainty is not quantifi-
able, but we found it to be quite effective for (1) showing the variability in 
hardiness zone boundaries, and (2) for determining the gridding interval 
at which variability is no longer visible.
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Figure 4. Scatter plot showing the result of 177 t-tests used to evaluate the null hypothesis that 
average error (difference between predicted and known values for 4,799 control points) is statistically 
similar for kriging and IDW when comparable gridding intervals are employed. The y-axis reports the 
t-statistic, or strength of difference between average error. The scale on the left indicates the t-statistic 
for gridding intervals ranging from 100 km to 11 km (white area), while the scale on the right indi-
cates the t-statistic for gridding intervals ranging from 10 km to 1 km (gray area). Solid point symbols 
indicate a statistically significant difference, whereas circles indicate that there is not a statistically 
significant difference (• = 0.05).

The animations show that hardiness zone boundary variability is 
extreme for larger, and perhaps unrealistic, gridding intervals. For larger 
gridding intervals, boundaries shift dramatically and chaotically, even 
when similar gridding intervals are employed in the interpolation process. 
At a scale of ~1:22,000,000, stability for both interpolation methods occurs 
at a gridding interval of ~10 km. Variability in boundary placement does 
occur when finer intervals are employed, but this variability is difficult to 
see at this scale of observation. 

The animation shows boundary variability between sequential grid-
ding intervals, but it is not useful for assessing boundary differences that 
occur out of the animation sequence. Figures 5 and 6 show a variety of 
hardiness zone boundaries for selected portions of the animation sequence 
simultaneously. Thick boundaries imply greater uncertainty for hardiness 
zone assignment whereas thinner boundaries imply less uncertainty for 
that particular portion of the map. We found this method to be useful for 
assessing boundary variability, but less useful for detecting the differential 
occurrence of data islands. 

Information Stability
Information stability was assessed by recording the variability in hardi-
ness zone assignment for 68 sample points by interpolation method and 
gridding interval. The sample includes capital cities within the 48 con-
terminous states, as well as 20 additional point locations. The location of 
capital cities was determined according to coordinates provided by the 

“We found [flickering] to be 
useful for assessing boundary 
variability, but less useful for 
detecting the differential
occurrence of data islands.”
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Figure 5. Composite maps showing the variability in hardiness zone boundaries for kriging and 
IDW for selected portions of the animation sequence (see Animations 1-3). Greater boundary width 
indicates greater method-produced uncertainty.  a) Gridding intervals from 100-60 km.  b) Gridding 
intervals from 59-40 km.

Figure 6. Composite maps showing the variability in hardiness zone boundaries for kriging and 
IDW for selected portions of the animation sequence (see Animations 1-3). Greater boundary width 
indicates greater method-produced uncertainty.  a) Gridding intervals from 39-21 km.  b) Gridding 
intervals from 20-1 km.

National Atlas of the United States (USGS, 2006). Because all capital cities 
fall within 10 km of the control points, 20 additional sample points were 
chosen based on their distance from control points, with 5 points selected 
at distance ranges of 10-30km, 30-50km, 50-70km, and >70km. 

The plant hardiness zone that was assigned to each sample point was 
assessed for all 354 maps. These data were used to calculate hardiness 
zone changes as gridding interval becomes finer. By zone change, we 
mean a shift in zone assignment between sequential animation frames. 
For example, if a sample point was assigned zone 4, then zone 5, and then 
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zone 4; two zone changes would be recorded. If a sample point was as-
signed zone 4, then zone 5, then zone 5; only one zone change would be 
recorded. 

Of the 68 sample points, 24 (35%) changed zones at least once, 16 (24%) 
changed zones over three times, and 5 (7%) changed zones over fifty 
times. Interestingly, Pierre, South Dakota changed zones 120 times, and 
Salt Lake City, Utah changed zones 90 times (Figure 7a). Table 2 shows 
the number and percent of control points that changed zones at least once 
according to 10-frame groupings. Figure 7b shows that the information 
contained in the plant hardiness zone maps tends to become more stable 
as gridding interval decreases, but also suggests that this relationship is 
not necessarily straightforward or predictable until stability occurs. 

Discussion

Our results shed light on some interesting trends regarding the behavior 
of Kriging versus IDW for plant hardiness zone boundaries when different 
gridding intervals are employed in the interpolation process. With respect 
to interpolation accuracy, as indicated by RMSE values, kriging appears to 
perform more accurately at coarser intervals, while IDW tends to perform 
slightly better at intervals finer than 9 km (see Figure 2, Table 1). This 
difference, however, is minor, with the greatest difference in RMSE being 
0.35˚ F at a gridding interval of 42.9 km (see Figure 4 for significance). 

In terms of visual uncertainty, for both kriging and IDW, hardiness zone 
boundaries tend to stabilize at a gridding interval of ~10 km when the 
maps are viewed at a scale of ~1:22,000,000. Further research is necessary 
to know if “average” map viewers would consider the maps to be visually 
stable when gridding intervals of less than 10 km are employed. Further-
more, this information could be used to explore the relationship between 

Figure 7. Information stability of hardiness zone assignment for 68 sample locations.  (a) Total number 
of zone changes.  (b) Percent places having zone changes by interpolation method according to
10-frame groupings in the animation sequence (see Animations 1-3).

“. . . Pierre, South Dakota 
changed zones 120 times, and 
Salt Lake City, Utah changed 
zones 90 times. “
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Table 2. Number and percent of 68 sample locations having zone changes by 10-frame
groupings in the animation sequence (see Animations 1-3; Figure 6).

interpolation accuracy (as expressed as RMSE) and visual stability. While 
empirical studies with human subjects are outside the scope of this paper, 
such research should be explored in the future. In terms of information 
content, IDW appears to produce much more stable boundaries than Krig-
ing. The overall difference in patterning provided by IDW and Kriging 
further emphasizes the tendency for IDW to create isolated data islands 
when all control point data are used for interpolation, a trend noted by 
Slocum (1999).

Interestingly, there is no clear relationship between the average distance 
between control points (~46 km) and the gridding interval at which visual 
stability tends to occur (~10 km). Furthermore, the sample points that 
showed the greatest information instability do not necessarily take place 
near a relatively consistent isoline boundary. For example, Salt Lake City, 
Utah and Pierre, South Dakota have a high number of zone shifts because 
isolated data islands appear and disappear repeatedly, even when only 
slightly different gridding intervals are employed.

The results reported here support the assertion that summary statistics, 
as used for evaluating interpolation accuracy, are not sufficient for charac-
terizing the uncertainty associated with isometric mapping (see Declerq, 
1996). When we applied a gridding interval of 9 km, kriging and IDW 
produced interpolated grids having nearly identical RMSE values (~0.73). 
The patterning shown in the two isometric maps, however, is quite differ-
ent (e.g., Mohave Desert; Figure 8). This holds true even when the same 
interpolation method is applied with different gridding intervals, especial-
ly when gridding intervals are relatively large. For example, when kriging 
is applied at intervals of 100 km and 99 km, dramatically different maps 
result, but RMSE values differ by only 0.006˚ F. The difference between 
these two maps may seem trivial if only RMSE is considered. 

The relationship between method-produced uncertainty and gridding 
interval is not as straightforward as that suggested by the systematic 

“. . . there is no clear
relationship between the

average distance between 
control points (~46 km) and 

the gridding interval at which 
visual stability tends to occur 

(~10 km).”

“The relationship between 
method-produced uncertainty 

and gridding interval is not as 
straightforward as that

suggested by the systematic
decrease in RMSE values 

shown in Figure 2.”
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Figure 8. Screen capture of frame 169 of Animation 3 showing the difference in patterning for kriging 
and IDW when RMSE values are nearly identical. (see page 74 for color version)

decrease in RMSE values shown in Figure 2. While finer gridding intervals 
tend to be associated with greater information stability, the percent of zone 
changes fluctuates chaotically until stability occurs (see Figure 7, Table 2). 
For example, when IDW is employed, a greater number of sample points 
demonstrate zone change at intervals ranging from 24.9-23.7 km (Anima-
tion Frames 141-150), than at intervals ranging from 82.8-71.3 km (Anima-
tion Frames 11-20).

Given these results, we might naturally recommend that cartographers 
employ the smallest gridding interval possible for interpolation so that 
more stable isometric maps will result. The fact that kriging and IDW 
show stable but very different representations of hardiness zone bound-
aries at fine gridding intervals supports the assertion that stability does 
not necessarily equal truth (but see MacEachren, 1995; Muehrcke, 1990). 
Moreover, changes in a variety of other parameters, such as search sector 
size, weighting exponent, or semi-variogram model, may produce even 
different patterning when fine gridding intervals are used in the interpo-
lation process. Our point is that no single isometric map will necessarily 
best represent hardiness zone boundaries because isometric maps contain 
inherent properties that make it difficult to verify a map’s true accuracy. 
Rather than attempting to make a single best hardiness zone map, we 
focus on communicating the nature and magnitude of hardiness zone un-
certainty by showing map readers a variety of reasonable hardiness zone 
maps, as discussed below.

 
Communicating Method-Produced Uncertainty in Plant Hardiness 
Zones

We examine the use of flickering and transparency for communicating 
method-produced uncertainty in plant hardiness zones in order to exam-
ine their effectiveness when applied to our set of data. First, we created 
a non-temporal animation that flickers a variety of reasonable hardiness 

“. . . no single isometric map 
will necessarily best represent 
hardiness zone boundaries 
because isometric maps contain 
inherent properties that make it 
difficult to verify a map’s true 
accuracy.”
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Figure 9. Selected frames from Animation 4. Frames on the left are IDW; frames on the right are
kriging. (see page 75 for color version)

zone maps (Animation 4 [http://www.nacis.org/index.cfm?x=24]; Figure 
9). Our intention is to allow map users to differentiate between hardiness 
zone patterning that is method-produced and hardiness zone patterning 
that is data-produced. To assemble the animation, we chose 11 hardiness 
zone maps for each interpolation method. The animation shows hardi-
ness zone maps from every tenth frame of the original animation sequence 
(Animations 1-3), with gridding intervals ranging from 25-54 km. Controls 
are included to allow users to toggle between the kriging and IDW ani-
mated sequences. Map users are not allowed to stop the animation so that 
more confidence cannot be placed in any single hardiness zone map.

While we found flickering to be a very effective technique for visual-
izing isometric uncertainty, this technique requires viewing the map on 
a computer screen. As an alternative to flickering, we explore the use of 
transparency for displaying several hardiness zone maps simultaneously. 
Figure 10 is a composite of 354 plant hardiness zone maps, half produced 
using kriging, and the other half using IDW. The composite map was cre-
ated by stacking all 354 plant hardiness zone maps, deleting polygon out-
lines, and displaying each map at a 99% transparency. The premise behind 
this application of transparency is that a mixture between colors along 
the spectral sequence relates to method-produced uncertainty. Colors that 
do not deviate from the conventional plant hardiness zone color scheme 

“The composite map was
created by stacking all 354 plant 

hardiness zone maps, deleting 
polygon outlines, and

displaying each map at a 99% 
transparency.”



cartographic perspectives                                    33Number 56, Winter 2007

Figure 10. Composite map of 354 isometric representations of plant hardiness zones using kriging and 
IDW interpolation methods. (see page 75 for color version)

(e.g., green, yellow, orange) indicate places that are consistently assigned 
the same hardiness zone. In contrast, “mixed” hues (e.g., greenish-orange, 
yellow-orange) indicate places that are repeatedly assigned different 
hardiness zones. Rather than showing the results of just one interpola-
tion method, our intention is to allow users to assess portions of the map 
where both kriging and IDW defined hardiness zones similarly, and places 
where they defined hardiness zones differently.

 
Conclusion

Cartographers have long recognized that all maps have a degree of uncer-
tainty. We know that the conceptual and methodological decisions made 
during the mapping process can greatly affect the visual outcome of a 
particular map representation. While the entire process of map creation is 
an uncertain endeavor, the method-produced uncertainty associated with 
isometric mapping is exacerbated by the fact that the majority of data val-
ues shown on a map are predictions that cannot be verified. Even though 
cartographers know that isometric maps are highly uncertain and there-
fore, prone to misunderstandings, the exact nature and magnitude of this 
uncertainty for a particular map may be often unexplored, and is rarely 
conveyed to map users.

In using plant hardiness zones as a case study, we have attempted to 
show that when different methodological decisions are made in the inter-
polation process, very different maps can result. For plant hardiness zone 
maps, these visual and informational differences are not easily explained, 
and are not as predictable as that suggested by interpolation accuracy 
statistics. Despite these properties, isometric mapping continues to be a 
preferred method for many social and physical scientists, particularly in 
the fields of climatology and meteorology, where isometric maps are often 
used for analytic purposes, or to assist in policy decision-making. Use of 
the exploration and visualization techniques examined herein might direct 
map users to a better understanding of uncertainty about isometric map 
interpolation through visual, as opposed to numerical, means. We believe 

“. . . our intention is to allow 
users to assess portions of the 
map where both kriging and 
IDW defined hardiness zones 
similarly, and places where they 
defined hardiness zones
differently.”
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that not only could these techniques assist map users in understanding 
uncertainty, they may also allow map users to feel more certain, when 
certainty it is warranted.
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