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Introduction

o begin it is useful to remark on some basic facts. The surface of the 
earth is two dimensional, which is why only (but also both) latitude 

and longitude are needed to pin down a location. Many authors, and text-
books mistakenly refer to it as three-dimensional. Yes, it is embedded in 
three dimensions, but the surface is a curved, closed, and bumpy two-di-
mensional surface. The graticule on the earth rides up and down over hill 
and dale. Map projections convert this surface to a flat two-dimensional 
surface. All map projections preserve the two dimensionally of the surface.

All map projections also result in distorted maps. Since the time of 
Ptolemy the objective has been to obtain maps with as little distortion as 
possible. But Mercator changed this by introducing the idea of a systemat-
ic distortion to assist in the solution of a problem. Mercator’s famous ana-
morphose is a nomogram that helps solve a navigation problem. His idea 
caught on. Thus it is useful to think of a map projection as you are used 
to thinking of graph paper: logarithmic and semi-logarithmic scales and 
probability plots and so on, are employed to bring out different aspects of 
data being analyzed. Map projections can be used in a similar manner to 
solve problems and are not only for geographic display. This, however, is 
not a common use in Geographic Information Systems. 

Unusual Projections

Azimuthal map projections always show correct directions from their cen-
ter. What varies is the map distance, relative to the spherical distance. The 
most common form represents the map within a circle. Thus the cylindri-
cal-like azimuthal projection developed by J. Craig (1910) in Cairo, shown 
here with the center at the intersection of the Greenwich meridian and the 
Equator is unusual (Figure 1). A different center using Craig’s projection 
will yield a different shape but will remain an azimuthal projection.

The radial distance on the different ‘circular’ azimuthal projections is 
extremely variable. Over two dozen have been named. In textbooks the 
conventional representation is to show the gnomonic, stereographic, equi-

1Based on an invited presentation at the 1999 meeting of the Association 
of American Geographers in Hawaii. The full presentation can be seen at 
http://www.geog.ucsb.edu/~tobler/presentations/ and titled Unusual 
Map Projections, Honolulu, 1999.

“But Mercator changed this by 
introducing the idea of a

 systematic distortion to assist 
in the solution of a problem.”

“Azimuthal map projections 
always show correct directions 

from their center. What varies is 
the map distance, relative to the 

spherical distance.”
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Figure 1. An unusual azimuthal projection invented by J. Craig (1910). Azimuths from the center are 
correctly depicted.

distant, orthographic and Lambert equal area projections by a polar view 
of latitudinal circles. On this type of diagram the variation in the distances 
from the center of the map is shown by variation in the spacing of the par-
allels. An alternate view is showing the curves in a graph of map distances 
versus spherical distances (Figure 2). 

The X-axis represents the distance on the sphere, and the Y-axis rep-
resents the same distance (to scale) on the map. Take an increment (one 
centimeter, say) on the X-axis, and then move up to the curve. Then move 
across to the Y-axis to find the amount by which the spherical distance 
has changed. The advantage of this representation is that the slope of the 
curve quickly reveals the distance change. It is also an approximation 
to the areal enlargement. For example, if the slope is greater than one, 
the map area is enlarged. If the slope is less than one the map distances 
shrink. If the slope is equal to one we have the azimuthal equidistant pro-

“The advantage of this
representation is that the slope 
of the curve quickly reveals 
the distance change. It is also 
an approximation to the areal 
enlargement.”
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Figure 2. Radial distance display of azimuthal projections. Spherical distances along the X axis, map 
distances along the Y axis.

jection. In this view, Snyder’s (1987) ‘Magnifying Glass’ projection appears 
as a kinked line (Figure 3). 

In studying migration about the Swedish city of Asby, Hägerstrand 
(1957) used the logarithm of the actual distance as the radial scale. This 
enlarges the scale in the center of Asby, near which most of the migration 
takes place. Actually, but not generally shown, there is a small hole in the 
middle of the map since the logarithm of zero is minus infinity. This loga-
rithmic azimuthal projection can easily be represented in the same graphic 
form as Snyder’s ‘Magnifying Glass’ projection. 

Figure 4 shows two new map versions in the same form as quarter 
circles, one giving an azimuthal myopic view {r=(2p–r2)½} and the other an 
anti-myopic view {r=p -(p2-r2) ½}. Popular today are also azimuthal maps 
on which the distance from the center is represented as fractional powers 
such the square or cube root of the spherical distance (Figure 5). It is also 
possible to scale azimuthal maps in terms of cost distances.

Retro-azimuthal projections show the direction to, not from, a center. 
For these maps it is also possible to choose different the distances to the 
center. One use was to let British colonials know in which direction to 
point their radio antennas to receive a signal sent from Rugby in the U.K 
(Hinks, 1929; Reeves, 1929). These unusual projections generally contain 
a hole inside of the map and a portion of the area overlaps itself (Tobler, 
2002). The size of the overlap, and the void, depends on the latitude of 
the map center. Several retro-azimuthal projections are demonstrated in a 
computer program from Axion Spatial Imaging.

Equal area projections are such that map areas are proportional to 
spherical areas. They are obtained by setting the differential of surface area 
on a sphere equal to that of a flat map. The consequent differential equa-

“Retro-azimuthal projections 
show the direction to, not from, 

a center.”

“Equal area projections are such 
that map areas are proportional 

to spherical areas.”
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Figure 3. Snyder’s magnifying glass azimuthal projection in the radial distance form, with two scales 
and a discontinuity.

Figure 4. Two new azimuthal projections: myopia version (left) and anti-myopia version (right).

tion has many solutions and thus depends on additional conditions. One 
such condition is to fit the maps into a particular shape. Quite a number of 
such shapes have been obtained. Here are a few new ones. It is relatively 
easy to fit equal area maps into regular N sided polygons. One computer 
program can do them all, starting with a triangle, for which N = 3. The 
case of a pentagon (N = 5) is shown here (Figure 6). Beyond about twenty 
it is not very interesting because the maps all converge to Lambert’s (1772) 
azimuthal equal area projection with a circular boundary.

“It is relatively easy to fit equal 
area maps into regular N sided 
polygons.”
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Figure 5. The Santa Barbaran View. Cube root distance azimuthal projection centered on Santa 
Barbara.

Figure 6. A new equal area map in a polygon. This is the polar case in a 
pentagon.

Maps on the five platonic solids have also been known for a long time 
(Fisher and Miller, 1944). They can be equal area or conformal. The gno-
monic projection is particularly easy to do on the surface of these solids. 
Apparently they have never been done on the surface of a pyramid. The 
next illustration is a special case of an equal area projection having N 
pointed triangular protrusions on an N-sided base. For three lobes, the 
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base is a triangle (this folds into a tetrahedron) with four lobes we get the 
pyramid (Figure 7). For six lobes the base is a hexagon. Again, all can be 
drawn using just one computer program with N as parameter. Conformal 
versions are also possible.

Composite equal area projections are perhaps of little value, but are fun. 
The combining technique works with most polycylindric and pseudocy-
lindric projections including the Lambert cylindrical, Mollweide’s (1805) 
projection and the sinusoidal, and those of Craster, Eckert, Boggs, etc., and 
with Tobler’s (1974) hyperelliptical system of projections. All are equal 
area projections, all maintain the length of the equator, and all meridians 
meet the equator at a right angle. Therefore these projections can be joined 
at the equator to have one projection for the Northern hemisphere, and 
another for the Southern hemisphere. Figure 8 shows an example, with 

Figure 7. An equal area projection on a pyramid (North polar case). (Cut out and glue together).

Figure 8. An equal area projection combining two projections. Mollweide’s projection above 
Lambert’s cylindrical equal area projection.

“Composite equal area
projections are perhaps of
little value, but are fun.”
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Figure 9. Mollweide’s equal area projection affinely modified to fit in a circle. The equal area
property is retained. 

Mollweide’s projection on top and Lambert’s equal area cylindrical projec-
tion as the Southern base. 

Affine transformations of equal area maps can yield more variants.  An 
example is Mollweide’s projection converted into an equal area circle
(Figure 9). The equations are X’ = 2X, Y’ = Y/2, where X and Y are the 
original Mollweide  coordinates and the primes denote the new coordi-
nates. Another gives an equal area square obtained from Lambert’s equal 
area cylindrical projection (Figure 10).

In addition to directions and areas, geographers who use maps are also 
concerned with distances. In general, all spherical distances cannot be 
correctly preserved on maps. But from one location, we have the equi-
distant azimuthal projection; the two-point equidistant projection is not 
often used but is occasionally appropriate. Chamberlin (1947) has given 
an approximate solution using three spherical distances. In order to best 
preserve all distances from more than three points one can used advanced 
techniques. Computing coordinates from distances is known as trilatera-
tion, it is also known as multi-dimensional scaling (Tobler, 1996). If one 
takes road distances from a Rand McNally (or other) road atlas and uses 
these distances to compute the location of the places, one can then inter-
polate the latitude-longitude graticule, and from this draw a map with 
state boundaries and coastlines. The resulting map projection (Figure 11) 
illustrates the distortion introduced by the road system. 

Furthermore, Tissot’s (1881) indicatrix can be used to calculate the 
angular and areal distortion, as well as the distance distortion, in every 
direction, at each map location. These measures provide indications of the 

“In addition to directions and 
areas, geographers who use 

maps are also concerned with 
distances.”

“Computing coordinates from 
distances is known as

trilateration, it is also known as 
multi-dimensional scaling.”
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Figure 10. Lambert’s cylindrical equal area projection affinely modified to fit in a square. The 
equal area property is retained. The equations are X’ =X / p½, Y’= p½ Y, where X and Y are the 
original Lambert coordinates. 

Figure 11. Student rendition of a road distance map of the United States, fitting distances from an 
atlas table. Graticule and state boundaries interpolated.

impacts of a road system, suggesting the use of map projections in trans-
portation studies. Instead of using road distances, travel times or costs, or 
great circle distances, one can also construct a map to preserve, in the least 
squares sense, loxodromic (rhumb line) distances, a hypothesis being that 
Portolan Charts made prior to 1500 AD might have used such distances in 
their construction (Figure 12).

CP59_28_40.indd   35 4/8/2008   5:48:14 PM



      36 Number 59,  Winter 2008  cartographic perspectives    

Figure 12. Mediterranean Sea best preserving loxodromic distances. 

One additional projection that preserves distances is the Stab-Werner 
(1514) projection, but it shows distances correctly from only one central 
location. This is normally one of the poles, most often the North Pole. The 
projection also happens to be equal area. Oblique versions of Werner’s 
projection are rare, although transverse versions of the closely related 
Bonne projection have been used. Such an oblique Werner projection is 
shown here (Figure 13) in the form of a graticule sketched in circa 1960 
from line printer output with the center at the latitude and longitude of 
New York City, and with the central axis directed towards Seattle.

The North Pole can be seen, from the graticule, to north of the center of 
New York. The map has been rotated so that the New York – Seattle great 
circle is the horizontal axis. As such this is not a terribly interesting map 
but it suggests an alternative, as follows. It is often asserted that trans-
portation costs increase at a decreasing rate with geographic distance. In 
other words, that the cost-distance curve has a concave down shape. On 

Figure 13. Werner’s projection centered at New York, with the 
central great circle directed towards the left tip. Seattle lies on this 
great circle at its correct distance from New York. The map is North 
oriented.

“It is often asserted that
transportation costs increase at 

a decreasing rate with
geographic distance. In other 
words, that the cost-distance 

curve has a concave down 
shape.”
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Figure 14. An equal area map using concave down (square root of) spherical distances. Left: polar 
case graticule to illustrate the properties. Right: centered on New York with the central great 
circle directed towards Seattle. The map is North oriented.

the map that follows (Figure 14) this cost idea is represented by the square 
root of the spherical distance from the map center, but the map has also 
been made to preserve spherical area.
The equations are:

	 X = R (2r)½ sin (l sin r)
	 Y = R (2r)½  cos (l sin r)

where r is the spherical distance from the map center and l is the longi-
tude. The map has a cordiform hole in the interior.  The latitude and lon-
gitude of New York has again been chosen as the center and the direction 
is to Seattle. It has again been rotated so that the New York – Seattle axis is 
horizontal. The equal area property, along with the concave distance func-
tion on this map, allows economic geography to be coupled with cartog-
raphy. Other concave down distance functions can also be combined with 
the equal area condition to give difference maps of this type.

A common and useful technique is to use a correctly chosen coordinate 
system in order to simplify a problem. Instead of using straight meridians 
and parallels on a cylindrical map projection to show curved global satel-
lite tracks, let us bend the meridians so that the satellite track becomes a 
straight line. This is more convenient for the automatic tracking of these 
satellites. What this looks like can be seen in an obscure paper by Breck-
man (1962) in which a map is designed for a satellite heading southeast 
from Cape Canaveral. The satellite path has become a straight line, mak-
ing tracking much easier. Since the satellite does not cross over Antarctica 
this is therefore not on the map. The track is a ‘saw-tooth’ line, first South, 
then North, then South again.

On the next map (Figure 15) the geomagnetic coordinates are straight-
ened in order to simplify the solution of problems involving terrestrial 
magnetism. This warps the normal geographic coordinates, but so what? 
It is not difficult to produce such maps graphically; it can also be done 
analytically. The idea is that we transform the graticule, and map, then 
study or solve our problem in this new reference frame, and then take 
the inverse transformation to bring the result back to the more conven-
tional coordinates. This transform-solve-invert paradigm is well known in 
mathematics (Eves, 1980). This is also an example of how Mercator’s idea 
works, and is one way in which areal cartograms, a generalization of equal 
area projections, may be used (Tobler, 2004). Kao (1967) provides further 
examples.

For quickly displaying geographic data on a computer screen it is not 
necessary to use a complicated projection such as the transverse Merca-

“The equal area property, along 
with the concave distance
function on this map, allows 
economic geography to be 
coupled with cartography.”

“The idea is that we transform 
the graticule, and map, then 
study or solve our problem in 
this new reference frame, and 
then take the inverse
transformation to bring the 
result back to the more
conventional coordinates.”
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Figure 15. Student rendition straightening magnetic meridians and parallels.

tor. A much simpler set of equations will do, assuming that the data are in 
latitude and longitude coordinates (Tobler, 1974). Only two parameters are 
required: the average latitude and the average longitude of the center of 
the area. The necessary equations are then:

X = R{cos (jo) Dl – sin (jo) Dj Dl}
Y = R{Dj + 0.5 sin (jo)  cos (jo) Dl Dl},

where R is in kilometers per degree on the mean radius sphere at the 
center location, Dj is the latitude minus the average latitude jo, and Dl is 
the longitude minus the average longitude. The X and Y values are then in 
kilometers. The resulting display is neither equal area nor conformal, but 
quite accurate and easy to compute for a small area not near either of the 
poles. The equatorial version for the entire earth – not a small area – will 
give a bow tie shaped map (Figure 16). Away from the Equator the whole 
earth can resemble a floppy bow tie. So use this projection only for areas 
smaller than the whole earth.

Figure 16. A bow tie projection.

“The resulting display is
neither equal area nor

conformal, but quite accurate 
and easy to compute for a small 

area not near either of the 
poles.”
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It is sometimes asserted that one disadvantage of a globe is that the 
entire earth cannot be seen at one time. But, the entire earth can be seen 
at one time if the transformation j’ = j and l’ = l/2 is used. Here j is 
latitude, and l is longitude. This transformation maps the entire surface 
of the earth onto one hemisphere. Repeat this for the backside of the globe 
and hardly anybody will notice that everything appears twice. East-West 
distances are of course foreshortened.  Other versions of this are possible.

Finally

This introduction to a few unusual map projections will, hopefully, con-
vince you that not only can these transformations be useful but also that 
they can be fun.
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