
Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups - Roth & Ross | 21

Extending the Google Maps API
for Event Animation Mashups

Robert E. Roth | reroth@psu.edu

Kevin S. Ross | kevin.ross@psu.edu

GeoVISTA Center, Department of Geography
Penn State University

302 Walker Building
University Park, PA 16801

I N T R O D U C T I O N

There is an unfortunate preconception among trained cartographers that
mashups—Google-based or otherwise—represent a bastardization of the
discipline, with the overcrowded push-pin map becoming the straw man
(or straw map) of every Cartography lecture and conference presentation.
However, mashups are becoming ubiquitous and today are perhaps the most
recognizable map form on the Internet. The cartographic community needs
to get serious about mashups, rather than dismiss them as the flavor of the
week. We should be the guiding voice, rather than the skeptical outsiders.
To be fair, many trained cartographers are doing wonderful things with
mashups, but even they need to be more active in extending the API and
releasing their source code (for an example of good open source practice
published in this journal, see Peterson, 2008). If we do not do this, all of the
sound cartographic knowledge generated during the past century will be
shredded by a cloud of pushpins.

Cartographic Perspectives, Number 64, Fall 200922 | Extending the Google Maps API for Event Animation Mashups - Roth & Ross

When asked to participate in this special issue illustrating the benefits
of the new open-access, web-delivered, all-digital format of Cartographic
Perspectives, we felt that a techniques piece approaching this issue was a
natural fit. In the following section, we provide a brief overview of mashups
broadly and Google Maps mashups particularly. In the third section, we
introduce event animation—our focus in this paper—and describe some
of the best mashups supporting this technique. In the fourth section, we
introduce and describe our contribution: a code library extending the Google
Maps API to include event animation. A tutorial containing step-by-step
instructions for using the code library is included as an appendix following
the main article. We conclude the main body of the paper by offering a
few positive words for the new CP format and the many possibilities made
available through it.

G O O G L E M A P S M A S H U P S

A mashup is an application, typically served on the web, that integrates
elements from multiple sources to form a new service (Shneiderman and
Plaisant, 2010). The term mashup originated in the music industry, where
there is a longstanding tradition of sampling, remixing, and mashing
song tracks. The Grey Album in particular (a mashup of the Beatle’s White
Album and Jay-Z’s Black Album)—and the legal battle that ensued over its
distribution—is cited as being particularly influential in placing the term
mashup into popular consciousness (McConchie, 2008).

Mashups embody the Web 2.0 philosophy, making use of the Internet as
a platform atop which disparate data sources and services can be stitched
together in various ways according to user needs (or, equally as common, user
whims) (O’Reilly, 2007). Although mashups do not need to be map-based, it
is no wonder why map mashups are one of the most common variant of web
mashups. Countless novice and expert mapmakers have experienced the ‘a-
ha’ moment when mapping a dataset atop a basemap of familiar features or
when charting multiple datasets in relation to one another. Often times, the
map mashup is simply the extension of this practice to digital mapmaking.
However, a map mashup can be so much more when the mapped geospatial
information is combined with sophisticated, geographically-enabled web
services. The map component of a mashup helps the user to submit the
proper parameters to the web service by providing spatial context and to
interpret the results of the web service by displaying the results spatially.

At the time of writing this piece, the two Google mapping platforms,
Google Maps and Google Earth, dominate the map mashup world (Zang
et al., 2008); our focus in this paper is on the former. While Google Earth
enables a wider range of interactions with a three-dimensional digital
globe, it is not natively browser-based, making it difficult to integrate web
services (however, a new browser plug-in was recently released, so it will
be interesting to see where this leads). A demonstration of the potential
of Google Earth mashups for high-end cartography and visualization is
provided by Wood and colleagues (2007).

A map mashup
can be so much
more when the
mapped geospatial
information is
combined with
sophisticated,
geographically-
enabled web services

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups - Roth & Ross | 23

The Google Maps mapping service was released formally in February of
2005. Soon after the release, numerous websites were established that hacked
the service to display their own geospatial information atop the Google
Maps tiles. In response to these hacks (and likely sensing opportunity),
Google released the Google Maps Application Programming Interface
(API) to facilitate development of Google Maps mashups (http://code.
google.com/apis/maps/) (McConchie, 2008). An API is a set of code
libraries made available by the developers of an application to allow others
access to the services provided in the application (Boulos, 2005). Google
provides an API in two different programming languages: JavaScript
and ActionScript. The other major mapping services since have followed
suit with the release of an API, including MapQuest, Microsoft Bing
Maps (formerly Microsoft Virtual Earth), OpenLayers/OpenScales,
OpenStreetMap, and Yahoo! Maps.

The Google Maps API is free as long as the mashup remains publically
available and nonproprietary, in many ways answering the calls for a
democratization of Cartography (Rød et al., 2001, Wood, 2003) and
resolving the GIS and Society debate (Miller, 2006). Google Maps mashups
can be run directly in the browser and do not require the user to download a
plug-in when using the JavaScript API. The Google Maps API easily draws
KML files, a format that is quickly becoming the PDF of spatial information
(Harrower, 2009). There also are a wide array of resources for learning and
using the Google Maps API, from the online code documentation (http://
code.google.com/apis/maps/documentation/) to a large set of technical
manuals (e.g., Gibson and Erle, 2006, Brown, 2006). There are now even
online tools that assist the generation of mashups, such as GeoCommons
Maker! (http://maker.geocommons.com/), effectively side-stepping the
primary barrier to making mashups: requisite programming skills (Harrower
et al., 2008).

E V E N T A N I M AT I O N & E V E N T A N I M AT I O N
M A S H U P S

Not all kinds of change are created equally, which means not all kinds
of animation (a dynamic representation of change over time) are created
equally. Andrienko and colleagues (2003) identify three basic kinds of
temporal changes: existential changes (appearance and disappearance),
changes of spatial properties (e.g., movement, expansion/contraction, shape
change), and changes of thematic properties (i.e., changes in attribute value).
Event animation, or more broadly event visualization, describes the first
kind of temporal change, as an event is defined as some type of occurrence
that exists only at one specific moment in time (e.g., it appears in one time
slice and then disappears for the remainder of the animation) (Chung et
al., 2005). An event often has spatial and attribute information associated
with it, but these values do not change over time in the majority of event
animations. Events are commonly represented as points (e.g., a disease
incident, a violent crime, an earthquake); this makes event visualization
particularly appropriate for the marker-heavy Google Maps platform.

The Google Maps
API is free as long as
the mashup remains
publically available

and nonproprietary.

Cartographic Perspectives, Number 64, Fall 200924 | Extending the Google Maps API for Event Animation Mashups - Roth & Ross

There are a handful of existing, well-designed mashups that support event
animation. A review of these applications is important for understanding
what functionality should be included in an event animation code library.
Our review includes Trulia Hindsight, AsthMap, SpatialKey, and our own
DC Crime Visualization. Interestingly, only our DC Crime Visualization
uses the Google Maps API, something that goes against the prevalence
of the Google platforms revealed in a study completed by Zang et al. (2008).

Trulia Hindsight: The Hindsight tool (http://hindsight.trulia.com/)
developed by Trulia (best known for their real estate search engine) is a
mashup that animates housing construction by year, providing prospective
buyers a quick overview of the historical development of a neighborhood.
Trulia Hindsight uses the Microsoft Virtual Earth platform; only the
remotely sensed imagery basemap is made available. Events (construction
of a new home) are represented by circles colored according to year built;
these circles are not interactive. Basic VCR controls are provided to control
the animation as well as a nice temporal legend that doubles as a histogram
showing the event frequency for each year. This temporal legend is also
interactive, allowing users to jump to a specific year using the slider control
and to filter the animation to include only a subset of the years in the
animation.

AsthMap: The AsthMap application (demo version with synthetic data
available at http://indiemaps.com/asthMap/) developed by the University
of Wisconsin-Madison Cartography Laboratory is a mashup for mapping
and analyzing asthma exacerbations in space and time (Johnson et al., 2007).
The tool was designed for use on an individual level (by doctors and patients)
to improve treatment and on an aggregate level (by public health officials)
to monitor environmental risk factors. Design of AsthMap was inspired
by the Trulia Hindsight tool, although several important improvements
were added. Like Trulia Hindsight, the Microsoft Virtual Earth platform

Figure 1: Hindsight (Trulia) - http://hindsight.trulia.com

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups - Roth & Ross | 25

was used, although users are provided the option of using an image or map
background. Also like Trulia Hindsight, events (usages of GPS-enabled
inhalers) are represented as circles colored according to the date. However,
these circles are now interactive, allowing for users to retrieve attribute
information about each event. Finally, AsthMap also includes similar VCR
controls and an interactive histogram. However, much more powerful
filtering (by space, time, sex, and age) and re-expression controls (either
linear or composite animation binned by year, month, week, or day) are
provided to improve interactive exploration.

Figure 2: AsthMap (UW-Madison Cartography Laboratory)
http://indiemaps.com/asthMap/

Figure 3: SpatialKey (Universal Mind) - (http://www.spatialkey.com)

Cartographic Perspectives, Number 64, Fall 200926 | Extending the Google Maps API for Event Animation Mashups - Roth & Ross

SpatialKey: SpatialKey (http://www.spatialkey.com), developed by
Universal Mind, is a collection of mashup templates that provides a suite of
visualization techniques for spatiotemporal information, event animation
being only one of them (Johnson, 2008). SpatialKey uses the MapQuest
platform and provides users with three basemap choices. There are two
significant improvements included in the SpatialKey mashup that are not
available in Trulia Hindsight or AsthMap. First, the SpatialKey tool allows
users to upload their own data, effectively helping them make their own
mashups. Once the data is loaded, users are provided with VCR controls and
an interactive temporal legend similar to those found in Trulia Hindsight.
Second, SpatialKey includes three representation techniques for aggregating
individual events by proximity when the display becomes cluttered, a
common concern with event visualizations. Aggregation techniques include
a graduated circle view (shown in Figure 3), a heat map view (i.e., a kernel
density estimation), and a heat grid view (similar to the chorodot map
proposed by MacEachren and DiBiase, 1991).

DC Crime Visualization: Drawing from these three examples, we
developed an event visualization mashup of violent crimes in the District
of Columbia (available at http://www.geovista.psu.edu/DCcrimeViz/)
here at the GeoVISTA Center (Ross et al., 2009). The District of Columbia
publishes violent crime incidents to their web-accessible data catalog site
(http://data.octo.dc.gov/) in near real-time (one business day delay for
processing). We have written a script to extract and clean information on
select violent crimes (arson, homicide, sexual abuse) for plotting in the
mashup. The mashup was developed using the Google Maps API for Flash
and provides the basic basemap type toggling, KML layer toggling, and
map browsing functionality included in the API. Like its predecessors, the
DC Crime Visualization application implements VCR controls and an

Figure 4: DC Crime Visualization (GeoVISTA Center)
http://www.geovista.psu.edu/DCcrimeviz/

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups - Roth & Ross | 27

interactive temporal legend. Users can also change the animation method
(linear or composite) and the binning unit (year, month, week, or day).
Two new features are included in the mashup. First, we have extended the
interactive temporal legend concept to include a temporal comparison
feature. Two different time slices can be viewed simultaneously on the map
by rolling over a different histogram bar in the temporal legend (shown
Figure 4). We have also modified the pop-up info window to provide a link
to the Google Maps Street View web service, allowing users to view the
context of the crime. The code library described in the following section is
based upon our DC Crime Visualization mashup.

E V E N T A N I M AT I O N C O D E L I B R A R Y

When asked to participate in this special issue, we decided to refactor our
code from the DC Crime Visualization to make it available as a library
of stand-alone, object-oriented classes. We were guided by two primary
objectives while completing this process. First, we wanted to make the new
code library as easy to use as the Google Maps API itself so that novice
programmers can still use it. Only a few lines of code are required for
setting up a Google Maps mashup, most of which can be copied directly
from their online tutorial. We challenged ourselves to maintain the same
level of simplicity, limiting the number of required instantiations and
making the parameters as logical as possible. Like Google, we also prepared
an accompanying tutorial (see the appendix) that provides step-by-step
instructions for setting up an event animation mashup. Figure 5 provides the
code used in the tutorial example.

Figure 5: The code used in the tutorial example for replicating the functionality in
the DC Crime Visualization. Although users of the library will need to change the
parameters according to their own mapping context, no further scripting is necessary
to make an event animation mashup.

Cartographic Perspectives, Number 64, Fall 200928 | Extending the Google Maps API for Event Animation Mashups - Roth & Ross

Second, we wanted to make the code library as flexible as possible to allow
expert users to extend and revise our initial contribution to suit their needs.
Our initial implementation is very basic, and, as demonstrated in the review
of extant mashups, many other features can be added. It is our hope that our
fellow cartographers will help us complete the library over time.

We have chosen to work with the Google Maps API for Flash because our
own expertise matches better with ActionScript and because we feel that
the Flash environment offers a wider range of possibilities particularly for
animation, but also for interactivity. There are obvious drawbacks to this
decision, namely that the development environment is proprietary (although
a 30-day free trial of Flash or Flex can be obtained from the Adobe website)
and that a browser plug-in is required to view Flash applications. Because of
this, we encourage others to replicate our work for the JavaScript API.

Our code library contains six classes, each provided as a separate
ActionScript (.as) file: CSVArray, Bin, AnimatedMap,
TemporalControls, TemporalLegend, and ToolTip. Coding
begins by importing three of the classes that are used in the main
application (Figure 5, lines #1-3); the other three classes are called by the
AnimatedMap class and therefore do not need to be imported.

We then require the user to enter parameters related to the CSV dataset
and instantiate the CSVArray class (Figure 5, lines #5-8). The CSV file
should contain three types of information for each event instance: (1)
spatial information (the latitude and longitude of the event), (2) temporal
information (one or several columns that include sequence information
allowing for binning the events into a set of time intervals), and (3) attribute
information (any other information that the developer wants to show in the
information window when an event is selected on the map). The CSVArray
object reads in a CSV file that is located at the URL entered into fileName
parameter and processes it into a form understandable by ActionScript (an
array of generic objects, with each object storing the attribute information
for a single event). The latName and longName are the header names for
the columns in the CSV file that contain spatial information. We require
that this information is provided as geographic coordinates in units of
decimal degrees, as this is what the Google Maps API requires. Also, we
currently only support the CSV file format. Extension to other coordinate
systems (e.g., UTM) or input formats (e.g., XML) are two examples where
the cartographic community can help to build a robust code library for
mashups.

After creating a CSVArray instance, the Bin instances are created
(Figure 5, lines #10-16). The Bin constructor takes three parameters: the
CSVArray instance (Figure 5, line #8), the header name of the column
containing temporal information (Figure 5, line #10), and the header
name of the column containing labels for the bins (Figure 5, line #11). We
require that the column containing temporal information passed into the
dataColumns array to be in a numerical format in order to automate the
binning sequence (e.g., we require the user convert “Sunday”, “Monday”,
“Tuesday” to 1, 2, 3 in the CSV file). The labels for each time slice are

We wanted to make the
code library as flexible
as possible to allow for
expert users to extend
and revise our initial
contribution to suit their
needs

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups - Roth & Ross | 29

maintained by passing the original column into the labelColumns array.
In the Figure 5 example, only a single Bin instance is created. However, any
number of Bin instances can be generated for use in the mashup by simply
adding more header names into the dataColumns and labelColumns
arrays.

The for loop (lines #13-16) creates a separate Bin instance for each of the
entries in the dataColumns array. The product of the Bin class is a two-
dimensional array of index positions relating to the CSVArray; the first
dimension stores the order of the bins, with a length equal to the number
of time steps (e.g., a length of 7 for a composite week animation), and the
second dimension stores the index positions of all events in the CSVArray
instance that fall within the given bin. Therefore, each Bin instance contains
the logic needed for a different animation. The set of Bin instances are
stored in a regular array called binArray (Figure 5, lines #12 and #15) for
use in the AnimatedMap instance. An interface widget is provided by the
library in order to toggle among the animations included in the binArray.

Following creation of the binArray, the AnimatedMap class is
instantiated (Figure 5, lines #18-22). The AnimatedMap class is our
adaptation on the Map class included in the Google Maps API. Seven
parameters are required to instantiate the AnimatedMap class: the Google
Maps API key (Figure 5, line #18), the center latitude (Figure 5, line #19)
and longitude (Figure 5, line #20) for the map, the scale of the map (Figure
5, line #21), a reference to the stage (a reserved word) so that the classes can
speak to the specific application, the binArray array (Figure 5, line #12),
and the dataColumns array (Figure 5, line #10).

The AnimatedMap class does much of the heavy lifting for the event
animation extension. It first creates a Map instance using the inputted
map parameters, providing logic for resizing the map, formatting markers
placed on the map, and interacting with markers placed on the map. The
AnimatedMap class then calls the TemporalControls class, which
sets up the simple VCR controls and provides the logic for converting the
two-dimensional arrays contained in the Bin instances into a working
animation. Finally, the AnimatedMap class calls the TemporalLegend
class to draw the histogram and attach the interactivity included in the DC
Crime Visualization mashup (including making use of the ToolTip class
for rolling over the histogram bars).

C O N C L U S I O N

In this paper, we argue that the cartographic community needs to have
an active voice in the design and implementation of map-based mashups,
providing one small contribution ourselves by extending the Google Maps
API for Flash to include event animation. Guidance must come not only
in the form of reviews and critiques, but also in the development and
public release of code libraries that extend the various map service APIs to
include animation, interaction, and representation techniques established
by academic and professional cartographers. 21st Century Cartography is

Cartographic Perspectives, Number 64, Fall 200930 | Extending the Google Maps API for Event Animation Mashups - Roth & Ross

as much about scripting as it is about graphic design. If the cartographic
community hopes to continue to shape the way that maps are made and
used in a positive way (why else would this community exist?), we need to
acknowledge this fact and acquire the necessary skill sets to stay current.

We think that the new open-access, web-delivered, all-digital format of
Cartographic Perspectives is reflective of the changing nature of Cartography
and is a major step in the right direction. The open-access format should
ensure that NACIS remains the meeting place for academic cartographers
(who have free access to a university library and all its indexed journals) and
professional cartographers (who do not have such access). Web-delivery,
coupled with the almost unheard of six week review turn-around, means that
content can remain current with the rapidly changing field. The all-digital
format opens the possibility of publishing multimedia materials along with
a traditional textual essay. The code library that we posted to the NACIS
website is just one example of utilizing the new digital format—we envision
the posting of other materials like geospatial datasets, experimental results,
multimedia tutorials, and, most importantly, digital maps as well. In general,
we are pleased with the progressive decision to change formats and wish the
journal and NACIS success moving forward.

A C K N O W L E D G E M E N T S

We wish to thank Craig McCabe for his early input into the DC Crime
Visualization mashup, on which much of our coding is based. We also
wish to thank Alan MacEachren for supervising development of the DC Crime
Visualization and for commenting on early versions of the tutorial. Finally, we wish to
thank Tanya Buckingham for putting together this outstanding special issue.

B I B L I O G R A P H Y

ANDRIENKO, N., ANDRIENKO, G. & GATALSKY, P. (2003) Exploratory spatio-temporal
visualization: an analytical review. Journal of Visual Languages and Computing, 14, 503-541.

BOULOS, M. N. K. (2005) Web GIS in practice III: Creating a simple interactive map of
England’s Strategic Health Authorities using Google Maps API, Google Earth KML, and
MSN Virtual Earth Map Control. International Journal of Health Geographics, 4, 22.

BROWN, M. C. (2006) Hacking Google Maps and Google Earth, Indianapolis, IN, Wiley.

CHUNG, W., CHEN, H., CHABOYA, L. G., O’TOOLE, C. D. & ATABAKHSH, H. (2005)
Evaluating event visualization: a usability study of COPLINK spatio-temporal visualizer.
International Journal of Human-Computer Studies, 62, 127-157.

GIBSON, R. & ERLE, S. (2006) Google Maps Hacks, Sebastopol, CA, O’Reilly.

HARROWER, M. (2009) Cartography 2.0. http://cartography2.org.

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups - Roth & Ross | 31

HARROWER, M., HEYMAN, D., SHEESLEY, B. & WOODRUFF, A. (2008) Maker!
Mapping the world’s data. NACIS 2008. Missoula, MT.

JOHNSON, Z., HARROWER, M., MCGLYNN, E., ROTH, R., SICKLE, D. V. &
WOODRUFF, A. (2007) Development of an online visualization tool for the mapping and
analysis of asthma exacerbations in space and time. NACIS 2007. St. Louis, MO.

JOHNSON, Z. F. (2008) SpatialKey: Insanely good geovisualization. http://indiemaps.com/
blog/2008/08/spatialkey-insanely-good-geovisualization/

MACEACHREN, A. M. & DIBIASE, D. (1991) Animated maps of aggregate data: Conceptual
and practical problems. Cartographic and Geographic Information Science, 18, 221-229.

MCCONCHIE, A. L. (2008) Mapping Mashups: Participation, collaboration, and critique on the
World Wide Web. PhD Dissertation, Geography. Vancouver, Canada, The University of
British Columbia.

MILLER, C. C. (2006) A beast in the field: The Google Maps mashup as GIS/2. Cartographica,
41, 187-199.

O’REILLY, T. (2007) What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software. Communications & Strategies.

PETERSON, M. (2008) Choropleth Google Maps. Cartographic Perspectives, 60, 80-83.

RØD, J. K., ORMELING, F. & ELZAKKER, C. V. (2001) An agenda for democratising
cartographic visualisation. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography,
55, 38-41.

ROSS, K. S., MCCABE, C. A. & ROTH, R. E. (2009) A near real-time visualization for
understanding spatio-temporal patterns of violent crime in the District of Columbia. The
Department of Homeland Security Summit. Washington, D.C.

SHNEIDERMAN, B. & PLAISANT, C. (2010) Designing the user interface: Strategies for
effective human-computer interaction, Boston, MA, Addison-Wesley.

WOOD, J., DYKES, J., SLINGSBY, A. & CLARKE, K. (2007) Interactive visual exploration of a
large spatio-temporal dataset: Reflections on a geovisualization mashup. IEEE Transactions
on Visualization and Computer Graphics, 13, 1176-1183.

WOOD, M. (2003) Some personal reflections on change...The past and future of cartography. The
Cartographic Journal, 40, 111-115.

ZANG, N., ROSSON, M. B. & NASSER, V. (2008) Mashups: Who? What? Where? Conference
on Human Factors in Computing Systems (CHI ‘08). Florence, Italy, ACM.

Cartographic Perspectives, Number 64, Fall 200932 | Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross

Extending the Google Maps API
for Event Animation Mashups: Tutorial

Robert E. Roth | reroth@psu.edu

Kevin S. Ross | kevin.ross@psu.edu

TUTORIAL

O V E R V I E W

The following tutorial provides step-by-step instructions for using our library
extending the Google Maps API for Flash to include event animation.
We have written the tutorial in a way that does not require any experience
programming with ActionScript3 (AS3) or with the Google Maps API for
Flash. For the most part, the code we provide in the following code banks
can be copied and pasted directly, only modifying the values of the input
parameters according to your particular mapping context. Operational
knowledge of AS3 and the API is needed to modify or extend our classes if
custom functionality is needed. The Google Maps API for Flash reference is
available here:

http://code.google.com/apis/maps/documentation/flash/reference.html

S E T T I N G U P T H E G O O G L E M A P S A P I
F O R F L A S H

I n s ta l l F l a s h

Flash is a proprietary web authoring environment produced by Adobe as part
of the Creative Suite. The Google Maps API works with any development
environment using AS3 (Flash CS3 or sooner and all versions of Flex). The
most recent version (CS4) is available for a 30-day free trial at:

http://www.adobe.com/downloads/

Figure 1 provides an annotated overview of the various interface panels
of the Flash CS4 authoring environment. Depending on the panel
configuration left by the last user of the application, you may see a different
set of panels (e.g., some present or not present) or these panels may be in
different locations on the interface. Flash panels are interactive; they can
be dragged around the application or they can be closed completely. If you
do not see a panel referenced in this tutorial, you can activate it using the
Window Tab in the Top Menu Bar. Flash CS4 also allows you to tear-away
and move all panels to a preferred configuration.

There are three important file types when authoring content in Flash. The
project itself is stored in a file with the extension FLA - the FLA file saves
all project content, settings, and code. In order to convert your Flash project
into a file that can be viewed in the Adobe Flash Player, you must first
publish it; this will result in the creation of a file with the extension SWF.

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross | 33

Figure 1 – The Flash authoring environment.

It is important that you save and back-up the FLA file, as this is needed to
open the project in Flash CS4 and edit it. It is important that you upload the
SWF file to your server space, as this is the format that can be viewed using
the Flash Player plug-in. Finally, external classes are saved in files with the
extension AS; our code library is provided as a set of AS files.

O b ta i n t h e A P I K e y

Once Flash is installed, it is necessary to add the Google Maps API. Google
requires you first to obtain an API key to use the Google Maps API for
Flash so that they can ensure you are using the API in accordance with their
licensing agreement. You need a Google account to obtain an API key. If
you do not already have a Google account (e.g., Gmail), you will need to first
sign up for one here:

https://www.google.com/accounts/ManageAccount

After signing into your Google account, you can obtain the API key here:

http://code.google.com/apis/maps/signup.html

Check the box stating you agree with the terms of use and enter the website
location (URL) where you will be hosting your mashup (e.g., http://www.
personal.psu.ed/rer198/). The API key itself is a long string of letters,
numbers, and punctuation symbols. Be sure to record this key in a place
where you will not lose it, as your mashup will not work unless you enter the
key exactly as given to you.

Cartographic Perspectives, Number 64, Fall 200934 | Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross

I n s ta l l t h e G oog l e M a p s C ompo n e n t

The next step in setting up the Google Maps API for Flash is installation
of the Google Maps component. A component is an AS3 class with related
graphics and code designed to provide a user interface quickly. You can
think of a component as a pre-programmed interface widget that can be
instantiated in your application and then connected to your own data.
Google follows this model by providing their mapping service as a custom
Flash component.

The custom component must first be installed by copying the SWC file
(Flash component file) into the Adobe Components Library. The SWC can
be obtained at the following link:

http://maps.googleapis.com/maps/flash/release/sdk.zip

There are two SWC files in the zip folder, one for Flex (labeled so) and one
for Flash (left unlabeled). Copy the SWC for Flash into the
Configuration\Components directory. The following is an example for the
Windows operating system:

C:\Program Files\Adobe\Adobe Flash CS4\language\Configuration\
Components\

Note that your directory may be different depending on the version of Flash
you are using, the location you choose when saving and installing Flash, and
your operating system.

All installed components are available for use in the Components Panel
in Flash. If the Components Panel is not currently visible, use the Window
Tab at the top of the application to activate it. If you installed the Google
Maps component properly, it will show up under the Standard Components
Tab in the Component Panel. You will need to drag the Google Maps
component from the Components Panel to the Library Panel in order to use
it (see Figure 2).

Figure 2 – The Google Maps component in the
Components Panel. If the Google Maps component
was installed correctly on your machine, it should
show up under the Standard Components Tab in the
Components Panel. You will need to drag and drop the
GoogleMapsLibrary component from the Components
Panel into the Library Panel in order to use it.

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross | 35

A d d t h e C om b oBo x C ompo n e n t t o t h e Li b r a r y

One other component required for your project is the ComboBox
component, which will enable toggling among multiple animations. The
ComboBox component can be found in the User Interface folder in the
Components Panel. To add this component to your project library, make
sure the Components Panel and the Library Panel are both visible. Locate
the ComboBox component in the Components Panel and drag it into the
Library Panel. This will allow the component to be instantiated when using
the library. Figure 3 shows the result of this action.

A l l o w t h e F l a s h P l ay e r t o C omm u n ic at e w i t h G oog l e

The final step is to ensure that your Flash Player plug-in allows a local
connection. To adjust this setting, visit:

http://www.macromedia.com/support/documentation/en/flashplayer/help/
settings_manager04a.html

Select the “Always allow” option. This allows Flash Player to connect to
datasets and services that are available online. If you do not do this, you will
not be able to test your application locally (i.e., without first uploading it to
your webspace).

F O R M AT T I N G T H E C S V F I L E

A d d C o l u m n H e a d e r N a m e s

Our current library only supports run-time loading of data in a CSV format.
The library requires each column in the CSV file to be formatted in a specific
way depending on if it contains spatial, temporal, or attribute data. All
columns, regardless of type, require a column header. Therefore, the first step
in formatting your data is to add a row to the top of the file that contains
a name for the column. This name must be formatted as text and cannot

Figure 3 – Adding the ComboBox component to
the Library. After installing the GoogleMapsLibrary
component, it is necessary to add the ComboBox
component to the Library. After dragging it from the
Component Panel to the Library Panel, you should see
the ComboBox in the Library plus several other assets
and components used by the ComboBox component.

Cartographic Perspectives, Number 64, Fall 200936 | Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross

contain commas. Table 1 provides an abbreviated example dataset
in Microsoft Excel prior to conversion to the CSV format (File/
Save As...).

F o r m at t h e C o l u m n s w i t h Sp at i a l D ata

The Google Maps API requires spatial data to use geographic
coordinates using decimal degrees as the unit. It also uses the
negative sign prefix (-) to represent latitude coordinates in the
southern hemisphere and longitude coordinates in the western
hemisphere.

F o r m at t h e C o l u m n s w i t h T e mpo r a l D ata

Columns containing temporal data must be formatted as numbers
in order for the code library to predict the sequence of time steps
(e.g., convert “SUN”, “MON”, “TUES” to 1, 2, 3). We have set
up the code library so that you can still use the original names for
labeling the temporal legend as long as it is included in a separate
column. In the Table 1 example, the temporalWeek column
includes the temporal data for the animation and the labelWeek
column includes the associated labels.

All rows with the same number in the temporal column are placed in the
same time slice or bin. This flexible format allows for the generation of linear
and composite animations using any number of binning units; non-temporal
animations can also be created using the numeric conversion as a way to
determine the binning order.

F o r m at t h e C o l u m n s w i t h At t r i b u t e D ata

The code library is written so that any attribute column is displayed in the
pop-up information window when clicking the marker. These columns can
be text or numerical. The only restriction is that commas cannot be included
in any text strings, as the CSV format uses these to discriminate individual
records in the data structure.

U S I N G T H E E V E N T A N I M AT I O N L I B R A R Y

Ac q u i r e t h e Li b r a r y

The complete library is available as a zip file from the following site:

http://www.nacis.org/CP/CP64/com.zip

Extract the zip file into the same folder that contains your saved Flash
project (FLA). You should notice that the files are in the directory
com\animation – the com folder needs to be in the same folder as your
FLA file for the libraries to import properly. The animation folder contains
six files:

Table 1 – An sample dataset using the required
format. All columns in the CSV require a text header
in the first row. Columns containing spatial data must
use geographic coordinates reported using decimal
degrees. Columns containing temporal data must be
formatted numerically reflecting the sequence of bins.
Columns containing attribute data can be formatted as
text or numbers, but cannot contain commas.

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross | 37

1. CSVArray.as: A class for ingesting a CSV file at run-time and
converting it into a usable format

2. Bin.as: A class for partitioning the entries in the CSV file according
to an attribute, producing a set of bins (i.e., time slices) for the
animation

3. AnimatedMap.as: A class for loading the Google Maps map service,
setting the layout, and instantiating the TemporalControls and
TemporalLegend classes

4. TemporalControls.as: A class for drawing and programming the
VCR controls and animation ComboBox selection

5. TemporalLegend.as: A class for drawing and programming the
interactive temporal legend

6. ToolTip.as: A class for generating information windows when
rolling over the bars in the temporal legend

I mpo r t t h e C l a s s e s

The first step in using the code library is importing three of six classes (the
remaining three are called directly or indirectly by the AnimatedMap
class). The import function is necessary when using classes outside of the
Flash base libraries. You can copy the lines in CodeBank 1 directly into the
Actions Panel.

I n s ta n t i at e t h e C S VA r r ay C l a s s

The next step is to instantiate the CSVArray class. The CSVArray
constructor takes three parameters: the name of the CSV file (if it is not in
the same location as the deployed SWF, the full path is required), the header
name of the column containing the latitude information, and the header
name of the column containing the longitude information. The parameters
must be passed into the CSVArray constructor in this order. You can copy
the lines #5-8 from CodeBank 2, although the “___” strings included for
the three parameters must be filled in with the appropriate information
about your dataset. Multiple CSV files can be loaded into a single
application if necessary, each requiring its own CSVArray instance (thus
repeating lines #5-8).

1	 import com.animation.CSVArray;

2	 import com.animation.Bin;

3	 import com.animation.AnimatedMap;

CodeBank 1 – Importing the classes.

Cartographic Perspectives, Number 64, Fall 200938 | Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross

I n s ta n t i at e t h e Bi n C l a s s

Once the CSV file is loaded, it can be partitioned to produce the animation
by instantiating the Bin class. The Bin class takes three parameters:
the CSVArray instance containing the data to be partitioned, the
header name of the column used for the partitioning, and the header
name of the column used for the X-Axis labels. CodeBank 3 shows the
setup required for instantiating two Bin instances. Any number of Bin
instances can be created depending on the number of desired animations.
The dataColumns array and the labelColumns array simply need
to be defined as the list of column header names used as the data and
corresponding labels for each animation, respectively. The dataColumns
and labelColumns array are associated in that the column entered in
the first index position of the dataColumns array will be labeled by the

1	 import com.animation.CSVArray;

2	 import com.animation.Bin;

3	 import com.animation.AnimatedMap;

4

5	 var fileName:String = “___”;

6	 var latName:String = “___”;

7	 var longName:String = “___”;

8	 var myCSVArray:CSVArray = new CSVArray (fileName, latName, longName);

9

10	 var dataColumns:Array = new Array (“___”,“___”);

11	 var labelColumns:Array = new Array (“___”,“___”);

12 	 var binArray:Array = new Array();

13	 for (var i:int = 0; i < dataColumns.length; i++) {

14		 var bin:Bin = new Bin (myCSVArray,dataColumns[i],labelColumns[i]);

15		 binArray.push(bin);

16	 }

CodeBank 3 – Instantiating the Bin class.

1	 import com.animation.CSVArray;

2	 import com.animation.Bin;

3	 import com.animation.AnimatedMap;

4

5	 var fileName:String = “___”;

6	 var latName:String = “___”;

7	 var longName:String = “___”;

8	 var myCSVArray:CSVArray = new CSVArray (fileName, latName, longName);

CodeBank 2 – Instantiating the CSVArray class.

Cartographic Perspectives, Number 64, Fall 2009 Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross | 39

column entered in the first index position of the labelColumns array, and
so on. The column entered at a given index position should be the same in
both the dataColumns and labelColumns array if you do not want to
specify a separate label column. Both arrays must have the same length. For
lines #10 and #11, you will need to replace the “___” with the appropriate
column header names from the CSV file.

After specifying the dataColumns and labelColumns array, the for
loop (lines #13-16) creates the Bin instances and stores them in an array
called binArray. The first Bin included in the array will be set as the
default. Lines #12-16 can be copied directly into your code.

I n s ta n t i at e t h e A n im at e d M a p C l a s s

The final step in using the library is to instantiate the AnimatedMap class,
as shown in CodeBank 4. The AnimatedMap class takes seven parameters:
the Google Maps API key (line #18), the latitude of origin (line #19), the
longitude of origin (line #20), the default scale (line #21), a reference to the
main stage (the keyword stage should be submitted here in all cases), the
binArray (line #15), and the dataColumns array (line #10). Default
values are currently put in for the lat, long, and scale variables; adjust these
according to your specific mapping context.

1	 import com.animation.CSVArray;

2	 import com.animation.Bin;

3	 import com.animation.AnimatedMap;

4

5	 var fileName:String = “___”;

6	 var latName:String = “___”;

7	 var longName:String = “___”;

8	 var myCSVArray:CSVArray = new CSVArray (fileName, latName, longName);

9

10	 var dataColumns:Array = new Array (“___”,“___”);

11	 var labelColumns:Array = new Array (“___”,“___”);

12 	 var binArray:Array = new Array();

13	 for (var i:int = 0; i < dataColumns.length; i++) {

14		 var bin:Bin = new Bin (myCSVArray,dataColumns[i],labelColumns[i]);

15	 	 binArray.push(bin);

16	 }

17

18	 var key:String = “___”;

19	 var lat:Number = 0;

20	 var long:Number = 0;

21	 var scale:Number = 1;

22	 var myMap:AnimatedMap = new AnimatedMap(key,lat,long,scale,stage,binArray, dataColumns);

	

CodeBank 4 – Instantiating the AnimatedMap class.

Cartographic Perspectives, Number 64, Fall 200940 | Extending the Google Maps API for Event Animation Mashups: Tutorial - Roth & Ross

1	 import com.animation.CSVArray;

2	 import com.animation.Bin;

3	 import com.animation.AnimatedMap;

4

5	 var fileName:String = “crimes.csv”;

6	 var latName:String = “latitude”;

7	 var longName:String = “longitude”;

8	 var myCSVArray:CSVArray = new CSVArray (fileName, latName, longName);

9

10	 var dataColumns:Array = new Array (“temporalWeek”);

11	 var labelColumns:Array = new Array (“labelWeek”);

12 	 var binArray:Array = new Array();

13	 for (var i:int = 0; i < dataColumns.length; i++) {

14		 var bin:Bin = new Bin (myCSVArray,dataColumns[i],labelColumns[i]);

15		 binArray.push(bin);

16	 }

17

18	 var key:String = “ABQIAAAAhjVwPC33U9Ph_NTg2AtD4RQs019z176na-d-7NF3sS6ek8haumCyfqzEBA”;

19	 var lat:Number = 38.895;

20	 var long:Number = -77.000;

21	 var scale:Number = 12;

22	 var myMap:AnimatedMap = new AnimatedMap(key,lat,long,scale,stage,binArray,dataColumns);

	
CodeBank 5 – An example project filling in the parameters using the data from Table 1.

Figure 4 – The interface included by default

After entering in these parameters,
you should be able to publish the file
into the SWF format by selecting
the Publish option under the File
Tab along Top Menu Bar (or by
pressing CTRL+ENTER).

CodeBank 5 shows the filled in code
related to the dataset shown in Table
1. Here, only a single animation is
created, using the temporalWeek
and labelWeek columns. The
published SWF file using this code
is shown in Figure 4.

