
Cartographic Perspectives, Number 66, Fall 2010 Programming Panning and Zooming in Interactive Maps – Woodruff | 59

Programming Panning and
Zooming in Interactive Maps

Andrew W. Woodruff | andy@axismaps.com

I N T R O D U C T I O N

An essential feature of many web-based, interactive maps is panning and
zooming, together referred to as map browsing. The ever-increasing data
storage capacity of online mapping systems and the near-ubiquity of web
and mobile mapping services like Google Maps mean that panning and
zooming are so often required and so often encountered that the likely
question facing web cartographers is not whether to include panning and
zooming, but rather how to include it. This tutorial addresses that how
question from a technical standpoint, offering methods for implementing
map browsing capabilities in Adobe Flash.

Harrower and Sheesley (2005) provide a practical framework for evaluating
panning and zooming methods that is helpful for deciding what methods
to support in an interactive map. They propose several functionality and
efficiency criteria and evaluate nine map browsing methods: 1) directly
reposition the map, 2) smart scroll bars, 3) rate-based scrolling, 4) keyboard
controls, 5) zoom and recenter under mouse click, 6) navigator tabs/
interactive compass, 7) navigator window, 8) specify explicit coordinates or
scale, and 9) zoom box. Interactive examples of eight of the nine are available

Axis Maps, LLC
P.O. Box 421

Hewitt, TX 76643

Cartographic Perspectives, Number 66, Fall 201060 | Programming Panning and Zooming in Interactive Maps – Woodruff

at http://www.cartogrammar.com/blog/map-panning-and-zooming-
methods/. Most of these methods are not mutually exclusive, and it is
advisable to support multiple types of map browsing in a single map (Roth
and Harrower 2008). In this tutorial I focus on three of the most common
and efficient methods identified by Harrower and Sheesley (2005): direct
manipulation (click-and-drag, or a “slippy map”), zoom box, and navigator
window.

Deciding how to implement panning and zooming depends heavily on the
design and purpose of the map. If a map does not require much custom
design, comprises fairly simple geo-referenced vector data, or needs to be
highly extensible or collaborative, then a mash-up approach with mapping
APIs such as Google Maps (or services built on top of them) may be
the simplest way to incorporate panning and zooming along with other
built-in functionality. If the map is only a raster image and otherwise not
interactive, software such as Zoomify (http://zoomify.com/) provides an
easy solution by automatically generating a panning and zooming interface
and breaking the image into tiles that are efficient for online viewing.
This tutorial, however, provides methods for manually programming
panning and zooming, perhaps best suited to maps with unique, custom
designs and interactivity that would be compromised by the constraints
of other options. The code provided is meant to facilitate adding panning
and zooming to an independent map, requiring little or no modification
to the map itself; this approach allows the map to be freely designed
and built around its core information and functions rather than the
supporting panning and zooming functions. Nonetheless, while a manual
method of implementing panning and zooming allows more freedom, the
cartographer should bear in mind that not every map may be worth the
additional labor and time required.

The tutorial presents code and instructions for implementing panning and
zooming using the Adobe Flash platform, following the precedent of Roth
and Ross (2009) in the first digital issue of Cartographic Perspectives. Flash
affords extensive freedom of both design and interactivity and thus serves
interactive cartography very well. It is also currently pervasive on the web
both in terms of content and browser support, and although its support
is limited on mobile devices, it remains a safe choice of platform for
publishing interactive maps intended for desktop or laptop use. The source
files for this tutorial are exclusively ActionScript 3, the scripting language
for Flash, and they do not require the use of one particular development
environment. However, the step-by-step instructions are given only for
Adobe Flash CS4 (CS3 is also compatible). Other options include Adobe
Flash Builder (formerly named Flex Builder) or a free Flex SDK available
at http://opensource.adobe.com/wiki/display/flexsdk/downloads.

The following instructions assume basic familiarity with Flash and
ActionScript 3 concepts. For introductory resources and to download a trial
version of Flash CS4, visit: http://www.adobe.com/devnet/flash/.

Deciding how
to implement
panning and
zooming
depends heavily
on the design
and purpose of
the map

Cartographic Perspectives, Number 66, Fall 2010 Programming Panning and Zooming in Interactive Maps – Woodruff | 61

D own l o a d t h e s ourc e f i l e s

The first step is to download the source files referenced in the tutorial. The
code library for this tutorial is available at:

http://www.nacis.org/CP/CP66/pan_zoom_tutorial.zip

Download and extract the zip file to a folder of your choice. If you examine
the extracted files, you should see two files and an org folder. Inside the org/
nacis/mapbrowsing folder are the three main ActionScript classes that control
panning and zooming:

1. PanZoomMap.as: The main class that creates a map that can be panned
and zoomed.

2. ZoomControls.as: A set of three simple buttons to control zooming. The
primary purpose of this class in the tutorial is to demonstrate how to create
controls that interact with the map.

3. NavigatorWindow.as: A class that generates a navigator window (i.e., a
small interactive overview map) for more advanced control of the panning
and zooming methods in PanZoomMap.as.

PanZoomTest.fla and PanZoomTest.as are Flash project files used for
demonstration in this tutorial.

O p e n t h e F l a s h pro j e ct

Begin by opening the FLA file, PanZoomTest.fla. This is the main Flash
document that contains graphics, code, and other settings. This project file will
be used to create a simple panning and zooming interface for an example map.
Upon opening the file, you will notice a blank stage and one Movie Clip called
ExampleMap in the Library panel (Figure 1). Double-click ExampleMap to
view it; it is simply a vector graphics drawing (Figure 2). This will serve as the
source map that will be panned and scaled. A custom map could be inserted
here, either by pasting graphics from another program or by drawing directly
in the Flash environment, to replace the tutorial example. The map does not
need to be a static image; it can contain interactive Flash components or more
advanced scripted interactivity.

Programming Panning and
Zooming in Flash CS4

Andrew W. Woodruff | andy@axismaps.com

TUTORIAL

Cartographic Perspectives, Number 66, Fall 201062 | Programming Panning and Zooming in Interactive Maps – Woodruff

Figure 1. PanZoomMap.fla upon first opening the file. ExampleMap is listed in the
Library panel on the right side.

Figure 2. PanZoomTest.fla with the ExampleMap visible.

Cartographic Perspectives, Number 66, Fall 2010 Programming Panning and Zooming in Interactive Maps – Woodruff | 63

P r e pa r e t h e s ourc e m a p

Rather than adding the map to the stage here in the authoring mode, it is
more efficient to create the PanZoomMap instance and add it to the stage
using only ActionScript. To do this, the ExampleMap library symbol
must be exported for use in ActionScript. Right-click ExampleMap in the
Library panel, select Properties, and check the “Export for ActionScript”
box (Figure 3). If you do not see the options shown in Figure 3, click the
“Advanced” button in the properties dialog. Note that the Class and Base
class text fields become populated when “Export for ActionScript” is selected.
ExampleMap will become an ActionScript class name that can be used
to create a new instance (or multiple instances) of this source map. Both of
these can refer to custom classes for advanced control and interactivity of the
map, but for the purposes of this tutorial the map will remain simply a set of
graphics, so leave the defaults as they are. Click OK on the Properties dialog
and OK again on the warning message that appears. Save the FLA file.

Figure 3. Exporting the movie clip for ActionScript

O p e n t h e docum e nt c l a s s

The FLA file is now ready to have code attached to it. ActionScript code can
be written for the main Flash movie either directly on timeline frames or in
a separate document class held in an ActionScript (.as) file. Because it keeps
most of the code in a central, well-organized file, a document class is the
better choice for projects relying mostly on ActionScript code, such as this
tutorial. Click a blank area of the stage to clear any selection, and note that
PanZoomTest has been defined as the document class in the Properties
panel (see Figure 1). Open the class either by clicking the pencil icon next to
that name or by directly opening PanZoomTest.as from the tutorial files.

C r e at e t h e m a p in s ta nc e

Find the // Declare variables here comment in PanZoomTest.
as. In this spot, instances of ExampleMap and the PanZoomMap will be
created. To do so, insert two lines of code as shown below.

Cartographic Perspectives, Number 66, Fall 201064 | Programming Panning and Zooming in Interactive Maps – Woodruff

// Begin code here
addChild(panZoomMap);
panZoomMap.x = panZoomMap.y = 15;

 // Declare variables here
private var sourceMap : ExampleMap = new ExampleMap();		
private var panZoomMap : PanZoomMap = new PanZoomMap(sourceMap, 500, 310);

The first variable is an instance of ExampleMap, being used as our source
map for panning and zooming. The second variable is an instance of
PanZoomMap, placing the source map into a layout that can be panned
and zoomed. A new instance of PanZoomMap requires three arguments:

1. A reference to the source map. This can be any display object. In this
case it is sourceMap, the instance of ExampleMap created in the
previous line.

2. The desired width of the viewable map area on the stage—the
“window” through which the map will be viewed. This can be any
number. 500 is arbitrarily chosen here.

3. The height of the viewable area. 310 is a height that approximately
maintains the original aspect ratio of the source map in this case.

Add t h e m a p on s ta g e

Now find the // Begin code here comment in the PanZoomMap()
constructor function. This code will run as soon as the SWF loads, so it is
where the map will actually be added to the stage. The code below adds the
PanZoomMap instance to the display and positions it a short distance from
the top and left edges of the stage.

Save PanZoomMap.as now and test PanZoomMap.fla by pressing
Control-Enter (Windows) or Command-Enter (Mac). The SWF will be
created and you should see the source map on the stage, scaled down to fit
the specified 500x310 dimensions. By default, PanZoomMap establishes
a minimum scale equal to the scale required to fit the entire map in the
viewable area, and it zooms to that scale at the start. Notice that clicking and
dragging the map has no effect. PanZoomMap also limits panning so that
the left edge of the map cannot be dragged inward past the left edge of the
viewable area, and so on. At the minimum scale, this means that no panning
at all is possible. To be able to pan, you need to zoom in.

T e s t zoomin g a nd pa nnin g

First, try zooming in and panning explicitly with code. Zooming is
accomplished with PanZoomMap’s zoomTo(), zoomIn(), or
zoomOut() methods, either by calling the functions directly or attaching

Cartographic Perspectives, Number 66, Fall 2010 Programming Panning and Zooming in Interactive Maps – Woodruff | 65

panZoomMap.zoomTo(panZoomMap.zoomAmount * 2);

panZoomMap.panTo(new Point(500,300));

them to interface controls. The latter two methods increase and decrease the
scale of the map by a factor of two. zoomTo() allows you to specify an exact
scale, where 1 is the scale at which the source map is its original size. To get
the current scale of the map, use the zoomAmount property. For a simple
test, return to where you left off in PanZoomTest.as and add the following
line of code to immediately zoom in by a factor of two:

Save and then run the SWF again, and the map will be zoomed in twice
as far as before. Now you are able to pan the map by clicking and dragging.
The panning is constrained in the manner described above. Similar to
the zoomTo() method, there is also a panTo() method for jumping
directly to a point on the map. Pass the panTo()method a Point object
containing x and y coordinates in the coordinate space of the source map (in
the case of the ExampleMap movie clip, the map’s coordinates have their
origin at the top left corner and extend to approximately 751 and 456 on the
x and y axes, respectively). Insert the code below, save the file, and run the
SWF. The map will be centered on a different area.

Add u s e r contro l

The above example shows how to change the zoom level to a predetermined
value through ActionScript code. Users, however, need to be given control
over this value so that they can manipulate the zoom level to meet their
own map use needs. Usually this involves creating buttons that invoke the
PanZoomMap methods. ZoomControls.as is provided as an example
set of buttons for controlling the map zoom. In PanZoomTest.as, erase
or comment out the zoomTo and panTo lines to restore the map to the
default behavior. Declare a new instance of ZoomControls and then add
it to the stage and reposition it, as in lines 15 and 24–26 below.

1		 package
2		 {
3
4		 import flash.display.MovieClip;
5		 import flash.geom.Point;
6		 import org.nacis.mapbrowsing.*;
7
8			 public class PanZoomTest extends MovieClip
9			 {
10
11			 // Declare variables here
12			 private var sourceMap : ExampleMap = new ExampleMap();

Cartographic Perspectives, Number 66, Fall 201066 | Programming Panning and Zooming in Interactive Maps – Woodruff

13	 private var panZoomMap : PanZoomMap = new PanZoomMap(sourceMap, 500, 310);
14	 // Declaring a new instance of zoom controls
15	 private var zoomControls : ZoomControls = new ZoomControls(panZoomMap);
16
17	 public function PanZoomTest()
18	 {
19
20		 // Begin code here
21		 addChild(panZoomMap);
22		 panZoomMap.x = panZoomMap.y = 15;	
23
24		 addChild(zoomControls);
25		 zoomControls.x = 15;
26		 zoomControls.y = 330;
27 }
28 }
29 }

CodeBank 1. PanZoomTest.as with a map instance and zoom controls

When the ZoomControls instance is declared in line 14, it must
be passed a reference to the PanZoomMap that it controls. You can
examine ZoomControls.as to see how it uses the zooming functions on
PanZoomMap, or to customize the design and placement of the buttons.
When you run the SWF, there will be three simple buttons below the map.
The “+” and “-” buttons zoom the map in and out, multiplying and dividing
the map scale by two. The third button enables a zoom box mode. In this
mode, click-and-drag panning is disabled and the mouse cursor becomes a
tool for specifying an area to which to zoom. Click and drag on the map to
draw a box, and when the mouse is released, the map will zoom to fit the
area within the box.

Figure 4. Zooming using the zoom box mode

Cartographic Perspectives, Number 66, Fall 2010 Programming Panning and Zooming in Interactive Maps – Woodruff | 67

13	 private var panZoomMap : PanZoomMap = new PanZoomMap(sourceMap, 500, 310);
14	 // Declaring a new instance of zoom controls
15	 private var zoomControls : ZoomControls = new ZoomControls(panZoomMap);
16
17	 public function PanZoomTest()
18	 {
19
20		 // Begin code here
21		 addChild(panZoomMap);
22		 panZoomMap.x = panZoomMap.y = 15;	
23
24		 addChild(zoomControls);
25		 zoomControls.x = 15;
26		 zoomControls.y = 330;
27 }
28 }
29 }

PanZoomMap contains a zoomBoxMode property that enables or
disables this mode. It is disabled by default. Clicking the zoom box button
in ZoomControls simply toggles the property. The zoom box works by
drawing a box on stage in the global coordinate space, transforming its
dimensions and center to map coordinates using the globalToLocal()
method, and then calling the zoomTo() and panTo() methods to
rescale and recenter the map. Figure 4 illustrates the click and drag zooming
implemented by the ZoomControls instance.

Add a n av i g ator window

A final, more advanced control provided here is the NavigatorWindow
class, which creates a small overview map that can be used to see the
currently visible map area in context and also to pan the map quickly.
Adding a navigator window is accomplished in the same way as adding
the zoom control buttons. Create a NavigatorWindow instance, giving
it a reference to the PanZoomMap instance and optionally a desired size
expressed as a proportion of the full source map size (it defaults to 0.25 if no
value is specified), and then add it to the stage (lines 15 and 28–30 below).
The final code for this tutorial should look as follows:

1	 package
2	 {
3
4	 import flash.display.MovieClip;
5	 import flash.geom.Point;
6	 import org.nacis.mapbrowsing.*;
7
8	 public class PanZoomTest extends MovieClip
9	 {
10
11		 // Declare variables here
12		 private var sourceMap : ExampleMap = new ExampleMap();
13		 private var panZoomMap : PanZoomMap = new PanZoomMap(sourceMap, 500, 310);
14		 private var zoomControls : ZoomControls = new ZoomControls(panZoomMap);
15		 private var navWindow : NavigatorWindow = new NavigatorWindow(panZoomMap);
16
17		 public function PanZoomTest()
18		 {
19
20			 // Begin code here
21			 addChild(panZoomMap);
22			 panZoomMap.x = panZoomMap.y = 15;	
23
24			 zoomControls.x = 15;
25			 zoomControls.y = 330;
26			 addChild(zoomControls);
27

Cartographic Perspectives, Number 66, Fall 201068 | Programming Panning and Zooming in Interactive Maps – Woodruff

Run the SWF again to test the navigator window. A red box on the overview
map shows the area currently in view, and the box can be dragged to pan
the map when possible (you will need to zoom in first). In simplified terms,
the indicator box on the NavigatorWindow is drawn at the dimensions
of the PanZoomMap’s viewable area and scaled to the inverse of the
PanZoomMap’s zoom level. It is positioned easily—and also allows easy
panning—because the coordinates on the NavigatorWindow correspond
directly to coordinates on the PanZoomMap source map.

Figure 5. The navigator window

28		 navWindow.x = 365;
29		 navWindow.y = 330;
30		 addChild(navWindow);
31		 }
32	 }
33 }

CodeBank 2. PanZoomTest.as with a map instance, zoom controls, and a navigator window.

Cartographic Perspectives, Number 66, Fall 2010 Programming Panning and Zooming in Interactive Maps – Woodruff | 69

E X T E N D I N G T HE PA N N I N G A N D Z O O M I N G
F U N C T I O N AL I T Y

This tutorial has covered the steps necessary to implement simple panning
and zooming using the accompanying code base. Although only a handful
of the code’s methods specifically have been addressed here, the tutorial
is intended to provide a basis for more complex and customized mapping
by explaining a few key points. As the tutorial demonstrates, the provided
ActionScript classes allow the generation of panning and zooming with only
a few lines of code. The classes themselves are written with the expectation of
further scrutiny from expert users, who can modify and extend the classes to
suit their specific needs. To that end, the files contain explanatory comments
within the code in an attempt to be as clear as possible about what exactly is
happening in each section of code.

Although the tutorial is written for Flash CS4, the ActionScript classes
in the org/nacis/mapbrowsing folder have no dependency on any
single development environment, and can easily be used in Flex or pure
ActionScript projects with Adobe Flex Builder or plain text compiled by
an open-source compiler. Additionally, much of the code exhibits general
concepts that can serve as a reference for writing the same functionality in
other programming languages.

It is my hope that this tutorial, along with recent articles such as those by
Roth and Ross (2009) and Peterson (2008), can help establish the new
digital Cartographic Perspectives as a trusted distributor of programming-
based web cartography resources, for the benefit of experienced and novice
cartographers alike. With open community contributions, discussion, and
updates such a repository can become more than a one-way broadcast of
articles, allowing community members to build upon work like this tutorial
and share those efforts.

R EFE R E N C ES

Harrower, M. and Sheesley, B. 2005. Designing better map interfaces: a
framework for panning and zooming. Transactions in GIS 9(2):1–16.

Peterson, M. 2008. Choropleth Google Maps. Cartographic Perspectives
60:80–83.

Roth, R. E. and Harrower, M. 2008. Addressing map interface usability:
learning from the Lakeshore Nature Preserve interactive map.
Cartographic Perspectives 60:46–66.

Roth, R. E. and Ross, K. 2009. Extending the Google Maps API for event
animation mashups. Cartographic Perspectives 64:21–40.

Cartographic Perspectives, Number 66, Fall 201070 | Programming Panning and Zooming in Interactive Maps – Woodruff

