
linking field notes to the maps generated in situ. Neatness,
completeness, and factual display of the information col-
lected are emphasized, while details such as the use of
dashed versus solid lines for inferred or known contacts
are scattered throughout. The second chapter, “Fair Copy
Maps and Other Illustrations” is aimed at creating a clean
map that shows selective information. Though not explicit-
ly stated in the book, the authors mean data generalization,
and describe which information from a field map transfers
to the fair copy map. Some considerations that a geolo-
gist makes are familiar to any cartographer, including map
function, clutter control, and scale.

The authors emphasize the use of hand-drawn maps in
this book; while they do consider the use of GPS, GIS,
stereographic aerial photography, and even Google Maps,
the majority of instruction is aimed at the use of paper
and pencil for the creation of both the field map and fair
copy map. There is brief mention of the use of computer
drafting and modeling in these two chapters. The chap-
ter titled “Field Maps and Field Notes” covers the use of
drafting software for the generation of fair copy maps, but
warns that the use of GIS for generating geologic maps
is very time consuming. Despite this, the authors list the
basic steps in transferring their hand drawn field maps into

a GIS. In the chapter titled “Fair Copy Maps and Other
Illustrations” briefly introduces the use of geological mod-
eling software such as RockWorks and Datamine for cre-
ating three-dimensional models from data collected in the
field.

The book concludes with a chapter covering geologic re-
port writing. The material covers report structure, refer-
encing systems, and some general comments about the
importance of clear and well-written reports for conveying
geologic information. This chapter serves as a nice remind-
er for students of how to compose a report, and offers use-
ful information on writing specific to geologic information.

Overall, I would recommend this book as a useful intro-
ductory textbook for geology students heading out for
their first field mapping experience, or as a general refer-
ence handbook for the more advanced geologist. The book
is succinctly written and contains many useful tricks and
tips for a wide array of geological measurement techniques.
I would recommend students using this book for geology
courses outside the United Kingdom to explore the guide-
lines and map resources available to them in their home
countries.

CO D E C H A R T S : R OA D M A P S A N D B L U E P R I N T S F O R
O B J E C T- O R I E N T E D P R O G R A M S

By Amnon H. Eden, with contributions from
Jonathon Nicholson.

John Wiley & Sons, 2011. 243 pages, no
maps, 123 code charts, many diagrams.
$93.95, hardcover.

ISBN: 978-0-470-62694-8

Review by: Jed Marti, Artis LLC

If you’re interested in the design and structure of large-
scale programs such as Geographic Information Systems
from the perspective of designing your own, you might
find this book of some interest. As the author points out,
software systems are the most complex things our civ-
ilization has created, and their sordid past is filled with
failure. Codecharts define the components and structure
of object-oriented programs in simple graphical terms,
somewhat like how antiquated flow charts mapped deci-
sions, loops, and computations into something easier to

understand than Fortran code. The aim is to create a vi-
sualization that will “fit on the side of a van.” It is hoped
that programs developed from Codechart descriptions will
have better structure that those that are not. By providing
a mapping between LePUS3, the language of Codecharts,
and Java (other languages are possible), it is possible to ver-
ify that a Codechart models a Java program.

There are 18 chapters divided into 3 sections. The first
section compares Design Description languages and
Codecharts (and its language LePUS3) to the more wide-
ly known Universal Modeling Language (UML), of which
the author is very critical. The second, and largest, section
describes modeling the various components of Object
Oriented programs and presents examples of common
practice and structures. The final theory section proves the
completeness of Codecharts and provides an entrance for
formal verification of programs so described.

Cartographic Perspectives, Number 75, 201360 | Reviews

I approached this book with three questions:

1.	 What, if anything, does this book have to do
with Cartography and Geographic Information
Systems?

2.	 Can the methodology proposed be of help to the
practitioners thereof?

3.	 Is this a good textbook?

Sadly, I conclude that the answers are nothing, no, and not
likely for any programs or systems we might find interest-
ing. A Cartographer will find no interesting maps or charts;
there are no dragons marked on the Codecharts, there are
no route numbers on the Roadmaps. Black, grey, and white
are sufficient for all diagrams presented. The book has a
high-resolution map of an urban manufacturing area on
the cover but that is the extent of the cartography.

Can learning this practice provide any assistance to the
learned cartographer? Here I think Codechart’s gener-
alization level fails the potential user. The language of
Codecharts is object-oriented programming, not the lin-
gua franca of Cartography and Geographic Information
Systems. Contrast this with Scalemaster diagrams (Roth
et al. 2011), where the description is in terms of geogra-
phy and geometry—the abstraction is in terms of the
problem to be solved, not the underlying implementation.
Furthermore, this abstraction drives the implementation in
the way that a Codechart written before the implemen-
tation cannot. One might hope to derive a Codechart
from this description, but the promised benefits are un-
likely to be useful or cost effective for the program’s users
or implementers as this involves learning an unfamiliar
representation.

The authors make the assumption that programmers are
competent machinists and cannot be relied upon to create
things without the benefits of a fancy flowchart. While this
may be true in enterprise systems with organized hordes
cranking out Java, many of the great systems of our time
such as SAS (statistics), ARCInfo, Maple (Computer
Algebra), and Matlab, amongst others, were designed and
at least initially implemented by leaders in their fields with
a goal and firm grasp of the field’s priniciples and per-
haps set of ad hoc flow charts and state diagrams at best.
The success of these enterprises invites emulation, not
replacement.

If the methodology isn’t particularly useful for GIS, can it
aid the broader community of programmers? The laudable
goals are object structure correctness, re-usability, and vi-
sualization. Following Codechart strictures may very well
lead to such programs but only for certain applications—
those similar to the case studies for support libraries for
XML, 3D graphics, and other similar application program
interfaces. It’s very hard to see where a new, stand-alone
program, perhaps even using these Codecharted APIs,
would benefit. A Codechart may define the 3D texture
mapping method in the class hierarchy but has little to say
about what it does and how to use it—you’re still required
to read the manual to find this out. What have you gained?

Though the Universal Modeling Language has achieved a
certain level of acceptance for complex systems it is unclear
that the rigorousness of Codecharts is required or support-
able in a research or academic environment. The support
for only Java limits applicability to systems that don’t re-
quire great efficiency for large amounts of data. The au-
thors wistfully hope that support for C++ and other useful
object-oriented languages may follow, but with minimal
return on investment, I think few would find this worth
their effort.

Is this a textbook that one might use in the Geography and
Computer Science classroom? This is unlikely for three
reasons: 1) There are no aids or even suggestions for exer-
cises, 2) There is no indication of how to accurately judge
a Codechart’s quality, 3) Large scale acceptance of UML.
Contrast this with the extensive exercises in the classroom
staple The Art of Computer Programming (Knuth 2011),
where the exercises are the most important part of the text
and problems range from obvious to PhD theses. Though
the book presents case studies for the usual design patterns,
the methodology lets you produce functional yet clumsy
object structures. Finally, there’s the inertia of large-scale
acceptance of UML with all its flaws. Codechart’s goals are
laudable but must provide more added value to leap this
hurdle.

R E F E R E N C E S

Knuth, D. E. 2011. The Art of Computer Programming. 5
vols. Boston: Addison-Wesley

Roth, R. E., C. A. Brewer, M. S. Stryker. 2011. “A
Typology of Operators for Maintaining Legible Map
Designs at Multiple Scales.” Cartographic Perspectives
68:29–64.

Cartographic Perspectives, Number 75, 2013 Reviews | 61

