
© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Cartographic Perspectives, Number 75, 2013 Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller | 37

PRACT ICAL CARTOGRAPHER 'S CORNER

Bruce D. Muller
University of Nebraska at Omaha

bmuller@unomaha.edu

Creating a Continuously Updated Animated
KML Loop with a PHP Mashup

This is the first of three Practical Cartographer's Corner pieces in this issue which come from a graduate course enti-
tled “Cartographic Methods,” taught by Michael Peterson (mpeterson@unomaha.edu) at the University of Nebraska at
Omaha during the 2013 Spring semester.

I N T R O D U C T I O N

Google Earth (GE) can display timestamped fea-
tures sequentially to create an animation on its interactive
globe. The GE TimeSpan capability has been utilized to
show a variety of imagery such as historical maps, or be-
fore/during/after imagery of remotely sensed landscapes
for easy comparison of changes due to a particular event
such as flooding. The period between such events can be
minutes, days, or even years, and possibly be available at
irregular user-specified intervals. As such, TimeSpan is

well-suited to properly display imagery that can be geo-
referenced, encoded into a Keyhole Markup Language
(KML) file, and timestamped for sequential viewing. For
imagery that is available at regular intervals, an automat-
ed process can be employed to create a continuously up-
dated KML file. Here I describe such a process, a mashup
that generates a loop of national weather radar imagery for
viewing on Google Earth.

P R O C E D U R A L OV E RV I E W

A mashup is typically a combination of a several dif-
ferent processes, such as a script that generates output that
is then compatible for viewing in another application. In
this case, the server-side scripting language known as PHP
is used to generate a KML file that can be opened and
viewed in GE. In order to provide a continuously updated
product, a Cron function (a time-based scheduler) is set
up on a recurring basis and run as often as needed, usual-
ly when a new “most recent” image becomes available that
can be added to the animated loop.

The National Weather Service (NWS) offers weath-
er imagery, for example from satellites (clouds) or radar
(precipitation), as near-real time static images or as ani-
mated loops, the latter showing perhaps the most recent
1–2 hours of recorded imagery. While provided via a web
page, users can also download the latest imagery via FTP
from the NWS or other sources. Websites showing ani-
mated radar or satellite loops usually display the imagery

by utilizing a Java applet or similar browser/client-side
program. In 2009, the NWS began to provide a limited
selection of their products in a KML format in an experi-
mental fashion. However, the vast majority of weather im-
agery, including loops, is still supplied through traditional
web pages. Due to the limited availability of current ani-
mated weather products in the KML format that can then
take advantage of GE’s functionality including zooming,
panning, etc., I implemented a mashup that published a
continually updating KML file. When opened in GE, it
displayed a weather radar loop comprised of approximately
150 NEXRAD images over the contiguous United States
(CONUS). Additionally, it is even possible to overlay other
layers in GE such as a satellite (cloud) layer where those
graphics may come in at different intervals (e.g., every 30
minutes). Each additional layer added will need its own
KML file, perhaps even created by its own separate PHP
mashup on a different schedule.

http://creativecommons.org/licenses/by-nc-nd/4.0/

T H E M A S H U P

The mashup procedure is controlled with the Cron
function and programs that run a PHP script at user-spec-
ified intervals. In this case, due to the availability of a new
CONUS radar composite every 10 minutes, the Cron
function called the PHP script every 10 minutes around
the clock (at every :00, :10, :20, etc. past the hour). An ex-
ample Cron command line to run the radar.php script is as
follows:

*/10**** php -f /home/bdmuller/
public_html/cgi-bin/radar.php

where */10**** specifies running the timing interval of
every 10 minutes, and php -f directs the running of a
PHP script, in this case radar.php located in the specified
folder. However, various web hosting services may include
a graphical user interface to enter the timing interval for
Cron jobs, as well as a browse option to navigate the user
to the correct folder for the PHP script, so knowledge of
the intricacies of the UNIX Cron command may not be
necessary.

Once launched, the PHP script accomplishes the follow-
ing steps, in this order:

1.	 Define time variables

2.	 Construct TimeSpan variables

3.	 Write to KML file

4.	 Rename each previously downloaded image to the
next older version, and retrieve the most recent new
radar image

5.	 (Optional) FTP (or move/copy) output files to an-
other location, if desired

S T E P 1: D E F I N I N G T H E T I M E VA R I A B L E S

The PHP code starts out by defining the time variables
necessary to accomplish all the tasks (Example 1). Time
variables are defined for each time step in the TimeSpan
loop sequence: one step for every 10 minutes (600 seconds)
in this case. Variables for year, month, day, hour and minute
need to be defined at each time step to build the TimeSpan
variable text string in step 2 (below). Thus, each additional
set of variables uses the time 10 minutes prior from the

previous time step, up to 4 hours prior to the present time,
in order to define time variables. This results in 25 total
time steps (including the beginning and ending times of
the loop), but only 24 frames are shown in the animation
as the first frame of the animation will be valid for the 10
minute window of time between 4 hours and 3 hours 50
minutes prior to the end of the loop.

<?php
// compute time variables for previous imagery
// at 10 minute intervals

date_default_timezone_set('UTC');
$b = time () - 600;
$c = time () - 1200;
$d = time () - 1800;
$e = time () - 2400;
$f = time () - 3000;
$g = time () - 3600; // one hour ago
$h = time () - 4200;
$i = time () - 4800;
$j = time () - 5400;
$k = time () - 6000;
$l = time () - 6600;
$m = time () - 7200; // two hours ago
$n = time () - 7800;
$o = time () - 8400;
$p = time () - 9000;
$q = time () - 9600;
$r = time () - 10200;
$s = time () - 10800; // three hours ago
$t = time () - 11400;
$u = time () - 12000;
$v = time () - 12600;
$w = time () - 13200;
$x = time () - 13800;
$y = time () - 14400; // four hours ago

$curYear1 = date('Y'); // now
$curMon1 = date('m');
$curDay1 = date('d');
$curHour1 = date('H');
$curMin1 = date('i');

$curYear2 = date('Y',$b);
$curMon2 = date('m',$b);
$curDay2 = date('d',$b);
$curHour2 = date('H',$b);
$curMin2 = date('i',$b); // this last block of
// code is repeated to define all time variables

Example 1: Sample of code that defines all the time variables.

Cartographic Perspectives, Number 75, 201338 | Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller

S T E P 2 : A S S E M B L I N G T H E T I M E S PA N T E X T
S T R I N G S

Next, the PHP code (Example 2) assembles the TimeSpan
variables in the format that Google Earth requires, in order
to read them properly. The TimeSpan variable is formatted
as follows:

YYYY-MM-DDTHH:MM:SSZZZZZZ

Where:
•	 “YYYY” represents the 4-digit year (e.g. 2013)

•	 “MM” represents the 2-digit month (e.g. 01 = January,
… 12 = December)

•	 “DD” represents the 2-digit day (e.g. 01, 02, … up to
31)

•	 “T” is a text divider between the date and time seg-
ments of the TimeSpan variable

•	 “HH” represents the 2-digit hour (e.g. 00, 01, … up to
23)

•	 “MM” represents the 2-digit minute (e.g. 00, 01, … up
to 59)

•	 “SS” represents the 2-digit second (e.g. 00, 01, up to
59)

•	 “ZZZZZZ” represents the difference from UTC in ±
HH:MM (e.g. +04:00 if 4 hours ahead of UTC. Note:
this is optional; it can be left blank if conversion to/
from UTC and local time is not necessary or they are
the same. If left blank GE will assume it is the local
time.)

S T E P 3 : W R I T I N G T O T H E K M L F I L E

The heart of the code is the generation of the KML output
file, and this is accomplished through a series of fwrite
commands that write to the file. Notice that in the first
line of this section of code (Example 3), unlink is used as
the PHP command to remove a file. After the file is recre-
ated, fwrite commands specify the text to enter line-by-
line to build the KML file using proper KML formatting

$T = "T";//create text strings for timespan variables
$H = "-";
$C = ":";
$Z = "00";
$tv1 = "{$curYear1}{$H}{$curMon1}{$H}{$curDay1}{$T}{$curHour1}{$C}{$curMin1}{$C}{$Z}";// now
$tv2 = "{$curYear2}{$H}{$curMon2}{$H}{$curDay2}{$T}{$curHour2}{$C}{$curMin2}{$C}{$Z}";// 10 minutes ago
$tv3 = "{$curYear3}{$H}{$curMon3}{$H}{$curDay3}{$T}{$curHour3}{$C}{$curMin3}{$C}{$Z}";// 20 minutes ago
$tv4 = "{$curYear4}{$H}{$curMon4}{$H}{$curDay4}{$T}{$curHour4}{$C}{$curMin4}{$C}{$Z}";// 30 minutes ago
$tv5 = "{$curYear5}{$H}{$curMon5}{$H}{$curDay5}{$T}{$curHour5}{$C}{$curMin5}{$C}{$Z}";// etc.
$tv6 = "{$curYear6}{$H}{$curMon6}{$H}{$curDay6}{$T}{$curHour6}{$C}{$curMin6}{$C}{$Z}";// etc.
$tv7 = "{$curYear7}{$H}{$curMon7}{$H}{$curDay7}{$T}{$curHour7}{$C}{$curMin7}{$C}{$Z}";
$tv8 = "{$curYear8}{$H}{$curMon8}{$H}{$curDay8}{$T}{$curHour8}{$C}{$curMin8}{$C}{$Z}";
$tv9 = "{$curYear9}{$H}{$curMon9}{$H}{$curDay9}{$T}{$curHour9}{$C}{$curMin9}{$C}{$Z}";
$tv10 = "{$curYear10}{$H}{$curMon10}{$H}{$curDay10}{$T}{$curHour10}{$C}{$curMin10}{$C}{$Z}";
$tv11 = "{$curYear11}{$H}{$curMon11}{$H}{$curDay11}{$T}{$curHour11}{$C}{$curMin11}{$C}{$Z}";
$tv12 = "{$curYear12}{$H}{$curMon12}{$H}{$curDay12}{$T}{$curHour12}{$C}{$curMin12}{$C}{$Z}";
$tv13 = "{$curYear13}{$H}{$curMon13}{$H}{$curDay13}{$T}{$curHour13}{$C}{$curMin13}{$C}{$Z}";
$tv14 = "{$curYear14}{$H}{$curMon14}{$H}{$curDay14}{$T}{$curHour14}{$C}{$curMin14}{$C}{$Z}";
$tv15 = "{$curYear15}{$H}{$curMon15}{$H}{$curDay15}{$T}{$curHour15}{$C}{$curMin15}{$C}{$Z}";
$tv16 = "{$curYear16}{$H}{$curMon16}{$H}{$curDay16}{$T}{$curHour16}{$C}{$curMin16}{$C}{$Z}";
$tv17 = "{$curYear17}{$H}{$curMon17}{$H}{$curDay17}{$T}{$curHour17}{$C}{$curMin17}{$C}{$Z}";
$tv18 = "{$curYear18}{$H}{$curMon18}{$H}{$curDay18}{$T}{$curHour18}{$C}{$curMin18}{$C}{$Z}";
$tv19 = "{$curYear19}{$H}{$curMon19}{$H}{$curDay19}{$T}{$curHour19}{$C}{$curMin19}{$C}{$Z}";
$tv20 = "{$curYear20}{$H}{$curMon20}{$H}{$curDay20}{$T}{$curHour20}{$C}{$curMin20}{$C}{$Z}";
$tv21 = "{$curYear21}{$H}{$curMon21}{$H}{$curDay21}{$T}{$curHour21}{$C}{$curMin21}{$C}{$Z}";
$tv22 = "{$curYear22}{$H}{$curMon22}{$H}{$curDay22}{$T}{$curHour22}{$C}{$curMin22}{$C}{$Z}";
$tv23 = "{$curYear23}{$H}{$curMon23}{$H}{$curDay23}{$T}{$curHour23}{$C}{$curMin23}{$C}{$Z}";
$tv24 = "{$curYear24}{$H}{$curMon24}{$H}{$curDay24}{$T}{$curHour24}{$C}{$curMin24}{$C}{$Z}";
$tv25 = "{$curYear25}{$H}{$curMon25}{$H}{$curDay25}{$T}{$curHour25}{$C}{$curMin25}{$C}{$Z}";// 4 hours ago

Example 2: Sample of code that assembles the TimeSpan text strings.

Cartographic Perspectives, Number 75, 2013 Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller | 39

and language. Text inside single quote marks (') is written
to the KML file as-is, while variables like the TimeSpan
values ($tv1, $tv2, etc.) are translated to their text string
equivalent values when inserted between double quote
marks ("). Each fwrite line ends with a carriage return
command ("\n") so the output KML file is human-read-
able in a text editor or word processor.

After writing the opening section of the KML file, the
PHP code becomes very repetitive (Example 4), repeating
the segment of code between the lines <groundoverlay>
and </groundoverlay> 24 times, once for each step of the
animation. These repeating sections are identical except for
the different TimeSpan variables in each section, as well
as different hyperlink references to the correct graphical
file for that time step. This section of code then closes the
KML file with an fclose command once the final line of
KML is written.

S T E P 4 : F I L E R E N A M I N G S E Q U E N C E

The last required step of the mashup is to rename each
image of the loop to the next older version of the file,
starting with the oldest image first (Example 5). This has
the effect of keeping only the last 24 images (one every
10 minutes for 4 hours). This was done so as not to keep
an endlessly large archive of all downloaded images. Once
the renaming sequence is completed, the newest radar
composite image is retrieved from the NWS website using
the file_put_contents and file_get_contents com-
mands shown in the Example 5 code.

S T E P 5 (O P T I O N A L) : F T P O U T P U T F I L E S T O
A LT E R N AT E L O C AT I O N

Although not shown here, one optional step, given PHP’s
capabilities, is to use FTP or similar PHP file move/copy
commands to transfer the updated files to a new server

unlink('radar.kml');
$filename = 'radar.kml';
$handle = fopen($filename, "w");

fwrite($handle, '<?xml version="1.0" encoding="UTF-8"?>'."\n");
fwrite($handle, '<kml xmlns="http://earth.google.com/kml/2.1">'."\n");
fwrite($handle, '<Folder>'."\n");
fwrite($handle, ' <name>TEST: GE animation of CONUS Radar Mosaic</name>'."\n");
fwrite($handle, ' <description><![CDATA['."\n");
fwrite($handle, 'Before animating, shrink time window in slider to minimum.'."\n");
fwrite($handle, 'Animation only works in latest GE beta 4.0 (after Sept 13, or 14 for Mac).'."\n");
fwrite($handle, 'Overlay shows NWS CONUS Radar Mosaic '."\n");
fwrite($handle, 'NOTE: This is experimental.'."\n");
fwrite($handle, ']]></description>'."\n");
fwrite($handle, ' <LookAt>'."\n");
fwrite($handle, ' <longitude>-100.00</longitude>'."\n");
fwrite($handle, ' <latitude>50.406626367301044</latitude>'."\n");
fwrite($handle, ' <range>10000000</range>'."\n");
fwrite($handle, ' <tilt>0</tilt>'."\n");
fwrite($handle, ' <heading>0</heading>'."\n");
fwrite($handle, ' <TimeSpan>'."\n");
fwrite($handle, ' <begin>'."$tv25".'</begin>'."\n");
fwrite($handle, ' <end>'."$tv24".'</end>'."\n");
fwrite($handle, ' </TimeSpan>'."\n");
fwrite($handle, ' </LookAt>'."\n");
fwrite($handle, ' <TimeSpan>'."\n");
fwrite($handle, ' <begin>'."$tv25".'</begin>'."\n");
fwrite($handle, ' <end>'."$tv1".'</end>'."\n");
fwrite($handle, ' </TimeSpan>'."\n");
fwrite($handle, ' <Folder>'."\n");
fwrite($handle, ' <name>frames</name>'."\n");
fwrite($handle, ' <description>Animation frames NWS CONUS Radar</description>'."\n");

Example 3: Sample of code that creates and opens the new KML file and writes the header information.

Cartographic Perspectives, Number 75, 201340 | Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller

or location such as your own public web site folder, if not
already there. Commands like ftp_open, ftp_put and
ftp_close are used to open an FTP connection, transfer

the selected files and then close the FTP connection when
completed.

R ES U LT I N G A N I M AT I O N

Once the PHP code execution has completed, the new
KML file is ready to open in GE. Upon opening the KML
file, GE will recognize the TimeSpan commands and in-
dividual frames from each groundoverlay section. While

GE loads each of the 24 frames, it works best to manual-
ly advance the time steps on the TimeSpan slider bar the
first time through, allowing a few moments for each frame
to load. Once they have loaded, you can open the Date

Example 4: Sample of code that writes each groundoverlay segment of the KML file, repeated 24 times (once for each time step).

fwrite($handle, ' <GroundOverlay>'."\n");
fwrite($handle, ' <name>CONUS - '."$tv24".'</name>'."\n");
fwrite($handle, ' <description>CONUS Mosaic</description>'."\n");
fwrite($handle, ' <TimeSpan>'."\n");
fwrite($handle, ' <begin>'."$tv25".'</begin>'."\n");
fwrite($handle, ' <end>'."$tv24".'</end>'."\n");
fwrite($handle, ' </TimeSpan>'."\n");
fwrite($handle, ' <Icon>'."\n");
fwrite($handle, '	 <href>http://bdmuller.freetzi.com/Presentation/latest_radaronly-23.gif</href>'."\n");
fwrite($handle, ' </Icon>'."\n");
fwrite($handle, ' <LatLonBox id="BBOX">'."\n");
fwrite($handle, '	 <south>21.652538062803</south>'."\n");
fwrite($handle, '	 <north>50.406626367301044</north>'."\n");
fwrite($handle, '	 <west>-127.620375523875420</west>'."\n");
fwrite($handle, '	 <east>-66.517937876818</east>'."\n");
fwrite($handle, '	 <rotation>0</rotation>'."\n");
fwrite($handle, ' </LatLonBox>'."\n");
fwrite($handle, ' </GroundOverlay> <GroundOverlay>'."\n");
// the section of code above is repeated for each frame of timespan loop and variable $tvxx is changed for each
// the section of code below is the final section to the end of the file
fwrite($handle, ' </GroundOverlay> <GroundOverlay>'."\n");
fwrite($handle, ' <name>CONUS - '."$tv1".'</name>'."\n");
fwrite($handle, ' <description>northeast Mosaic</description>'."\n");
fwrite($handle, ' <TimeSpan>'."\n");
fwrite($handle, '	 <begin>'."$tv2".'</begin>'."\n");
fwrite($handle, '	 <end>'."$tv1".'</end>'."\n");
fwrite($handle, ' </TimeSpan>'."\n");
fwrite($handle, ' <Icon>'."\n");
fwrite($handle, '	 <href>http://bdmuller.freetzi.com/Presentation/latest_radaronly.gif</href>'."\n");
fwrite($handle, ' </Icon>'."\n");
fwrite($handle, ' <LatLonBox id="BBOX">'."\n");
fwrite($handle, '	 <south>21.652538062803</south>'."\n");
fwrite($handle, '	 <north>50.406626367301044</north>'."\n");
fwrite($handle, '	 <west>-127.620375523875420</west>'."\n");
fwrite($handle, '	 <east>-66.517937876818</east>'."\n");
fwrite($handle, '	 <rotation>0</rotation>'."\n");
fwrite($handle, ' </LatLonBox>'."\n");
fwrite($handle, ' </GroundOverlay></Folder>'."\n");
fwrite($handle, '</Folder>'."\n");
fwrite($handle, '</kml>'."\n");
fclose($handle);

Cartographic Perspectives, Number 75, 2013 Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller | 41

and Time Options (click on the
wrench icon on the TimeSpan
control bar), then adjust the loop
animation speed and check the
Loop Animation box if desired.
Once started, the animation will
run in a continuous loop, and the
user can zoom in, pan and rotate
around any feature of interest,
utilizing the full capabilities of
GE. As an example, several im-
ages from the animated loop of
April 22, 2013 can be seen in
Figure 1. This particular KML
file is available for download at:
http://bdmuller.comeze.com/
Project/radar.kml.

S U M M A RY

Through the use of a mash-
up method, a computer user fa-
miliar with Cron functionality,
PHP commands, KML, and GE
can create their own animated
loops using different types of
graphics that update on regular
or even irregular intervals and
display these within Google
Earth. Just about any time-
stamped graphical image that is
produced in a recurring fashion
can be assembled into a loop and
viewed as a GE TimeSpan ani-
mation. Finally, the mashup can be customized to operate
on any number of animation frames or timing intervals

that the user desires, creating a custom animation suitable
for viewing through Google Earth.

R E FE R E N C ES

Google. 2013. “Keyhole Markup Language, Time and
Animation.” Last modified November 14. https://
developers.google.com/kml/documentation/time.

IBM. 2013. “UNIX Cron Format.” IBM DB2 Database
for Linux, UNIX, and Windows Information Center.
Accessed April 15. http://publib.boulder.ibm.com/
infocenter/db2luw/v9r5/index.jsp?topic=%2Fcom.
ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fc0054381.html.

//Previous files are renamed to the next older version each
//time the code executes until they are each overwritten keeping
//only the most recent 4 hours of the loop
rename("latest_radaronly-23.gif", "latest_radaronly-24.gif");
rename("latest_radaronly-22.gif", "latest_radaronly-23.gif");
rename("latest_radaronly-21.gif", "latest_radaronly-22.gif");
rename("latest_radaronly-20.gif", "latest_radaronly-21.gif");
rename("latest_radaronly-19.gif", "latest_radaronly-20.gif");
rename("latest_radaronly-18.gif", "latest_radaronly-19.gif");
rename("latest_radaronly-17.gif", "latest_radaronly-18.gif");
rename("latest_radaronly-16.gif", "latest_radaronly-17.gif");
rename("latest_radaronly-15.gif", "latest_radaronly-16.gif");
rename("latest_radaronly-14.gif", "latest_radaronly-15.gif");
rename("latest_radaronly-13.gif", "latest_radaronly-14.gif");
rename("latest_radaronly-12.gif", "latest_radaronly-13.gif");
rename("latest_radaronly-11.gif", "latest_radaronly-12.gif");
rename("latest_radaronly-10.gif", "latest_radaronly-11.gif");
rename("latest_radaronly-9.gif", "latest_radaronly-10.gif");
rename("latest_radaronly-8.gif", "latest_radaronly-9.gif");
rename("latest_radaronly-7.gif", "latest_radaronly-8.gif");
rename("latest_radaronly-6.gif", "latest_radaronly-7.gif");
rename("latest_radaronly-5.gif", "latest_radaronly-6.gif");
rename("latest_radaronly-4.gif", "latest_radaronly-5.gif");
rename("latest_radaronly-3.gif", "latest_radaronly-4.gif");
rename("latest_radaronly-2.gif", "latest_radaronly-3.gif");
rename("latest_radaronly-1.gif", "latest_radaronly-2.gif");
rename("latest_radaronly.gif", "latest_radaronly-1.gif");

//After renaming old files then retrieve newest CONUS Radar Mosaic
file_put_contents("latest_radaronly.gif",
 file_get_contents("http://radar.weather.gov/ridge/Conus/
 RadarImg/latest_radaronly.gif"));

Example 5: Sample of code that renames each previously downloaded image to the next older
version in the sequence ("23" becomes "24," "22" becomes "23," etc.)

Cartographic Perspectives, Number 75, 201342 | Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller

http://bdmuller.comeze.com/Project/radar.kml
http://bdmuller.comeze.com/Project/radar.kml
https://developers.google.com/kml/documentation/time
https://developers.google.com/kml/documentation/time
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%

National Weather Service. 2013. “National Weather Data
in KML/KMZ Formats.” Last modified August 14.
http://www.srh.noaa.gov/gis/kml/.

The PHP Documentation Group. 2014. “PHP Manual.”
Last modified March 18. http://www.php.net/manual/
en/index.php.

Figure 1: Selected frames from the animated loop of April 22, 2013.

Cartographic Perspectives, Number 75, 2013 Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller | 43

http://www.srh.noaa.gov/gis/kml/
http://www.php.net/manual/en/index.php
http://www.php.net/manual/en/index.php

Cartographic Perspectives, Number 75, 201344 | Creating a Continuously Updated Animated KML Loop with a PHP Mashup  –  Muller

