
© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Cartographic Perspectives, Number 75, 2013 Mapping the EXIF Data Stored in an Image – Pagett | 45

PRACT ICAL CARTOGRAPHER 'S CORNER

This is the second of three Practical Cartographer's Corner pieces in this issue which come from a graduate course enti-
tled “Cartographic Methods,” taught by Michael Peterson (mpeterson@unomaha.edu) at the University of Nebraska at
Omaha during the 2013 Spring semester.

Almost all pictures taken with mobile phones incor-
porate location within a portion of the image file. These
Exchangeable Image File Format (EXIF) data are a stan-
dard part of each picture, and include a variety of informa-
tion, including the device used, the lens, the exposure, and
the date and time the image was taken (Wikipedia 2013).
If the phone can determine its location through GPS,
WiFi or cell phone tower triangulation, the latitude and
longitude will also be captured.

The process of extracting location data is quite simple, and
my purpose here is to give an overview of the necessary
code and some of the options for displaying them. There
are few requirements: the image must have an Internet ad-
dress and must include the location within the EXIF part
of the file. One thing to note is that some sites, such as
Flickr and Facebook (Bailey 2010), often extract the EXIF
data and then remove that information from the image;
you will need the original images and not ones uploaded to
Flickr or other similar sites.

PHP was used for extracting location data, as it has many
built-in functions that are useful for this task. The PHP
code in Example 1, checks to make sure there is location-
al data stored in the EXIF. Next, it extracts the data and
does the conversion necessary to get the GPS coordinates
into the proper latitude and longitude format. The data
are stored as degrees, minutes, and seconds and need to be
converted into degree decimal format. Finally, the function
returns the properly formatted latitude and longitude. This
point can then be placed on a map.

The PHP code in Example 2 places the latitude and longi-
tude into the HTML code:

Line 1 — calls the function readGPSinfoEXIF() and
sets the variable $results to the values returned.

Line 2 — sets the $lat variable equal to the value in the
first element of the $results array.

Line 3 — sets the $lng variable to the second element
in the $results array. It is then multiplied by -1 to put
the point in the proper hemisphere.

Line 4 — PHP outputs the HTML values for the
body tag and inserts the call to the JavaScript function
 initialize() with the values for latitude and longi-
tude returned from PHP variables.

Line 5 — PHP outputs the HTML code to create a
table section and creates the first table row.

Line 6 — PHP outputs the code to create the first stan-
dard cell in the table and inserts the map variables.

Line 7 — PHP outputs the standard table cell that will
contain the image that contains the locational data.

Line 8 — Closes the table row and table.

In Example 3, the JavaScript function initialize() cre-
ates the actual map and assigns the values to the title and
info window. By querying the Google geocoder function
with the latitude and longitude, the initialize() func-
tion can determine the closest address. The results are re-
turned in a number of formats. For this example, the basic
address, city, state, and ZIP information are returned. This
reverse geocoding is only an estimate and is not guaranteed
to be the closest address (Google 2013).

Greg Pagett
University of Nebraska at Omaha

casperpage@gmail.com

Mapping the EXIF Data Stored in an Image

http://creativecommons.org/licenses/by-nc-nd/4.0/

function readGPSinfoEXIF()
{
 $exif=exif_read_data('outside.jpg', 0, true); //sets a variable with all
 //the EXIF data

 if(!$exif || $exif['GPS']['GPSLatitude'] == '') //Determines if the
 //geolocation data exists in the EXIF data
 {
 return false; //no GPS Data found
 echo "No GPS DATA in EXIF METADATA";
 }
 else
 {
 $lat_ref = $exif['GPS']['GPSLatitudeRef'];
 $lat = $exif['GPS']['GPSLatitude']; //sets a variable equal
 //to the Latitude
 list($num, $dec) = explode('/', $lat[0]); //calculates the Degrees
 $lat_s = $num / $dec;
 list($num, $dec) = explode('/', $lat[1]); //calculates the Minutes
 $lat_m = $num / $dec;
 list($num, $dec) = explode('/', $lat[2]); //calculates the Seconds
 $lat_v = $num / $dec;

 $lon_ref = $exif['GPS']['GPSLongitudeRef'];
 $lon = $exif['GPS']['GPSLongitude']; //sets the variable for
 //the longitude
 list($num, $dec) = explode('/', $lon[0]); //puts the degrees into
 //a variable
 $lon_s = $num / $dec;
 list($num, $dec) = explode('/', $lon[1]); //puts the minutes into
 //a variable
 $lon_m = $num / $dec;
 list($num, $dec) = explode('/', $lon[2]); //puts the seconds into
 //a variable
 $lon_v = $num / $dec;

 //Calculates the GPS location in decimal form.
 $gps_int = array($lat_s + $lat_m / 60.0 + $lat_v / 3600.0, $lon_s
 + $lon_m / 60.0 + $lon_v / 3600.0);
 return $gps_int; //returns the coordinates
 }
}

Line 1 - $results = readGPSinfoEXIF();
Line 2 - $lat = $results[0];
Line 3 - $lng = $results[1] * -1; //the returned value for longitude
 //must be negative to be mapped on this side of the world.
Line 4 - echo "<body onload=\"initialize($lat , $lng)\">" ;
Line 5 - echo "<table><tr>";
Line 6 - echo " <td><div id=\"map-canvas\" style=\"width: 800px; height:
 480px;\"></div> </td>";
Line 7 - echo " <td><image src='outside.jpg' width=200: height=300><td>";
Line 8 - echo " </tr></table>";

Example 1: PHP code for extracting the EXIF data from an image.

Example 2: This code writes the HTML that displays the web page with the values gathered from the EXIF extract. The line numbers are only used
for the line-by-line explanation.

Cartographic Perspectives, Number 75, 201346 | Mapping the EXIF Data Stored in an Image – Pagett

Now that the locational data have been extracted and the
map has been created, the information is sent to the client
and the point is mapped. The information is displayed in
both the information window and the title, which displays
when the mouse hovers over the marker.

Adjusting the display marker is possible. For example, a
thumbnail image could be used to substitute the image for
the marker. The image used as the marker needs to be small
and should be in the Portable Network Graphics (PNG)
format.

In Example 4, icon: image is the code
that assigns the image to the marker. At
this point, we can also add a shadow with
the code shadow: shadowimage where
shadowimage is the location and name of
the shadow file. This shadow file is usual-
ly a few pixels larger than the thumbnail
image. One could also set the shadowim-
age to a grey image if the location is found

Example 3: The JavaScript used to get the geocoded information based on the latitude and longitude returned from the PHP code.

<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false">
 </script>
<script>
 var geocoder;
 var map;
 function initialize(lat, lng) { //name of the function
 geocoder = new google.maps.Geocoder(); //creates a new geocoder object
 var latlng = new google.maps.LatLng(lat, lng); //creates new lat and long object
 var mapOptions = {
 zoom: 11, //sets the zoom level to 11
 center: latlng, //makes the center of the map
 //the latitude and longitude of the image
 mapTypeId: google.maps.MapTypeId.ROADMAP //sets the type of map to be
 //displayed
 }
 //creates the actual map object with the previously set options
 map = new google.maps.Map(document.getElementById("map-canvas"), mapOptions);

 geocoder.geocode({'latLng': latlng}, function(results, status)
 {
 if (status == google.maps.GeocoderStatus.OK) { //logic chekt to see if
 // mapping successful
 if (results[1]) {
 marker = new google.maps.Marker({ //create marker at the
 //point from the image
 position: latlng,
 title: results[0].formatted_address, //create the title
 //of the map the same as the closest address found.
 map: map});
 var infowindow = new google.maps.InfoWindow({ //create an infowindow
 //to display the address also
 content: results[0].formatted_address});
 infowindow.open(map,marker);
 }
 } else {
 alert("Geocoder failed due to: " + status);
 }
 });
}
</script>

Example 4: The JavaScript code to create a custom marker icon.

 var image = 'beachflag.png';
 var myLatLng = new google.maps.LatLng(-33.890542, 151.274856);
 var beachMarker = new google.maps.Marker({
 position: myLatLng,
 map: map,
 icon: image
 });

Cartographic Perspectives, Number 75, 2013 Mapping the EXIF Data Stored in an Image – Pagett | 47

in the EXIF data, or alternatively the shadowimage could
be red to indicate missing data (Figure 2).

Other forms of symbolization are possible. For instance,
if the ZIP code is missing from the Google query, one
could change the image to bounce with the animation:
google:maps.Animation.BOUNCE code in the marker
settings.

There are many options available for displaying EXIF data
that would allow the developer to add uniqueness and in-
teractivity to their maps through images. The EXIF data
are currently used in many popular applications and web-
sites. The examples here use Google’s API but this is not
the only mapping API currently available. Leaflet and
OpenStreetMap can both display the images and their re-
spective EXIF data in a similar manner to Google.

In the end, it is up to the developer to decide which op-
tions to use and how to utilize the available API tools, and
as geocoding becomes more popular, more tools and map-
ping options will become available

With some imagination, it is easy to create a unique map-
ping experience with photos and EXIF data.

R E FE R E N C ES

Bailey, Jonathan. 2010. “Flickr and Facebook STILL
Strip EXIF Data.” Plagarism Today. Accessed April 14,
2013. http://www.plagiarismtoday.com/2010/04/22/
flickr-and-facebook-still-strip-exif-data/.

Google. 2013. “Reverse Geocoding (Address Lookup).”
Google Developers. Accessed April 14. https://
developers.google.com/maps/documentation/
geocoding/#ReverseGeocoding.

Wikipedia. 2013. “Exchangeable image file format.”
Accessed April 14. http://en.wikipedia.org/wiki/
Exchangeable_image_file_format.

Figure 1: The image and its location based on data extracted from
the EXIF part of the image file.

Figure 2: The first image is an example of a shadow that would
represent the existence of EXIF data for location. The second image,
using a red shadow, represents missing data.

Cartographic Perspectives, Number 75, 201348 | Mapping the EXIF Data Stored in an Image – Pagett

http://www.plagiarismtoday.com/2010/04/22/flickr-and-facebook-still-strip-exif-data/
http://www.plagiarismtoday.com/2010/04/22/flickr-and-facebook-still-strip-exif-data/
https://developers.google.com/maps/documentation/geocoding/#ReverseGeocoding
https://developers.google.com/maps/documentation/geocoding/#ReverseGeocoding
https://developers.google.com/maps/documentation/geocoding/#ReverseGeocoding
http://en.wikipedia.org/wiki/Exchangeable_image_file_format
http://en.wikipedia.org/wiki/Exchangeable_image_file_format

