
© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Cartographic Perspectives, Number 75, 2013 Map-based Input with Google Fusion Tables  –  Shepard | 49

PRACT ICAL CARTOGRAPHER 'S CORNER

Robert Shepard
University of Nebraska–Lincoln

shepard@huskers.unl.edu

Map-based Input with Google Fusion Tables

This is the final of three Practical Cartographer's Corner pieces in this issue which come from a graduate course enti-
tled “Cartographic Methods,” taught by Michael Peterson (mpeterson@unomaha.edu) at the University of Nebraska at
Omaha during the 2013 Spring semester.

I N T R O D U C T I O N

Google Fusion Tables has become increasingly pop-
ular for its data sharing potential as well as its automat-
ic geocoding service, which converts tabular address data
to latitude and longitude coordinates and plots them on
a map. Understandably, there is substantial documentation
on the web devoted to helping people and organizations
take advantage of these features. However, one area that is
not well documented is how to enter point data through a
map.

There are potentially very many practical applications
for entering point locations. For example, a digital histo-
ry project team using an online GIS to display and store
their data may want to receive requests and corrections to
their data set from other historians; or perhaps a crowd-
sourced mapping project relies on input from many users

simultaneously, none of whom are GIS technicians. It is
possible for a web developer to create a MySQL database
on a server and grant users the requisite permissions to
write to that database using information drawn from the
map application.

Google Fusion Tables provides a viable and simple alter-
native for entering point data. Outlined here is how to
build a basic, cloud-based method of map input that uses
a combination of free Google services to acquire, manage,
and display spatial data. An intermediate understanding of
HTML and JavaScript is required to create a map-based
input application with Fusion Tables. A prospective devel-
oper will need a web host for displaying pages and a des-
ignated Google account, preferably not a personal account.

C R E AT I N G A N D S Y N C I N G T H E F O R M A N D DATA B A S ES

As with all database applications, the structure of the
database must be planned in advance. The process will syn-
chronize Google Forms, Google Spreadsheets, and Google
Fusion Tables, and so it is desirable to have the fields for all
three of these match to ensure that data are being trans-
ferred and copied properly. If a developer wants to add a
field to a Fusion Table, for example, and expects user input
for those fields from a map-based application, a change has
to be made at all levels, and this becomes more difficult
after data input begins.

The process begins with creating a Google Form in Google
Drive and adding text-field questions for “latitude” and
“longitude,” in addition to any other attribute informa-
tion that a developer might want to attach to mapped data
points. For custom styling options in the final output, some
question should involve a categorical variable that can
be queried later (the example here asks the user to cate-
gorize the type of point, assigning a numerical value of 1,
2 or 3 from a radio button selector to fill the form field).
Afterward, the developer should click Choose response des-
tination in the menu bar and elect to create a new Google
Spreadsheet in which the responses will be stored.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Once the spreadsheet is in place, a Google Fusion Table
is created in Google Drive by choosing Create > Fusion
Table, importing the newly-created spreadsheet that is al-
ready synchronized with the form. Because the latitude and
longitude fields have to be submitted through the form as
text, they come into the Fusion Table as text as well, and
this property has to be changed for mapping data. Changes
are made to columns in Fusion Tables by choosing Edit >
Change Columns in the menu bar. Columns are select-
able on the left, and, once highlighted, their properties are
displayed on the right. Latitude and longitude should be
changed to location types, two column location should be
checked. Once changes are saved, and before returning to
Google Drive, it is very important to record the unique ID
for the Fusion table. The ID is a 40-character alphanumer-
ic string accessed by selecting File > About in the menu
of the Fusion Table, and this string is needed for accessing
the table using the Google Maps API. Finally, the table
should be shared.

A little bit of script editing can synchronize the Fusion
Table with the form, but first a project has to be prepared
and authorized to use scripts on a user’s account. This work
is done in the script editor, which is accessed in the re-
sponse spreadsheet by selecting Tools > Script Editor. The
very first task is setting the project properties for the script,
accessed in the menu bar of the script editor, by selecting
File > Project Properties… The developer has to enter his

or her Google account username, and add rows to enter the
account password and a “docid,” which will be the variable
used to identify the Fusion Table ID to which the spread-
sheet will sync (Figure 1). It is very important to enter the
“docid” field in quotation marks.

After project properties have been set, a custom script
can be developed to synchronize the spreadsheet with
the Fusion Table. The process can be extremely compli-
cated, even for those who have experience writing scripts.
Fortunately, Kathryn Hurley of the Google Fusion Tables
team has provided a very useful script specifically in-
tended to synchronize Google Spreadsheets and Google
Fusion Tables. The script can be accessed from http://kh-
samples.googlecode.com/svn/trunk/code/appsscript.
js and it should be copied from its source and pasted into
the script editor window, replacing all of the placeholder
text that may be present. Again, Google has made some
minor adjustments to their online documents system since
the creation of the script. In particular, the Google Fusion
Table ID field is now a string rather than a numeric ID,
so it important that the value for docid is contained with-
in quotation marks in the project properties window. That
way, the script will properly identify the Fusion Table to
which it is supposed to send data. With the script copied
into the editor window, the project should then be saved.

The last steps of syncing the form and databases involve
automating and authorizing the sync process. In the script
editor menu, the developer should choose Select Function
> onFormSubmit. Then, the steps should be run by select-
ing the small triangle Run button from the menu. The pro-
gram prompts the developer to authorize. After authoriz-
ing the behavior, the developer should select the Triggers
(clock icon) from the menu and click to add the trigger
mechanism: Run: onFormSumit, Events: From spreadsheet,
“on form submit.” After the steps have been completed,
input generated from the form will automatically write to
the Fusion Table as well as the response spreadsheet.

C R E AT I N G T H E M A P I N P U T S YS T E M

Google Forms automatically generates a webpage
for form submissions. Clicking on View live form from the
spreadsheet and viewing the source code for the form, or
grabbing the embed form in a webpage link allows a de-
veloper to view the HTML code for the standard input
form. Within this code are several items of interest. First

of all, the URL listed in the form action section is the tar-
get spreadsheet to which the form is sending data. Each
segment of the form lists a variable name that represents
a column in the database to which records are added (e.g.,
“name = entry_1739129090”). These fields precede the text
that indicates the title for each input box. There is also an

Figure 1: Entering project properties to authorize scripts.

Cartographic Perspectives, Number 75, 201350 | Map-based Input with Google Fusion Tables  –  Shepard

http://kh-samples.googlecode.com/svn/trunk/code/appsscript.js
http://kh-samples.googlecode.com/svn/trunk/code/appsscript.js
http://kh-samples.googlecode.com/svn/trunk/code/appsscript.js

ID field that identifies each form box relative to other el-
ements on the page. Lastly, an important item to note is
how the HTTP POST command is used to submit re-
cords to the database. Whether data are being sent using
this combination of Google Maps API and Google Forms,
or whether a developer is attempting to send data to a
Fusion Table directly, the POST command is the standard
format for inserting data into Google Drive documents.

The map application input system for the Fusion Tables
database therefore is focused on capturing user-defined
information in the browser, most importantly latitude and
longitude, and routing that information to the form input
boxes by way of creating user-defined variables that link up
with the ID names of form input variables.

Once the map has been called in an initialize function, lis-
teners have to be set, waiting for users to commit a single
click event and capture the coordinates of that click. The
code follows a simple document.getElementByID(xxx).

value = format. Examples 1 and 2 document working ex-
cerpts of this procedure using Google Maps API v.3.

With listeners and events set to capture coordinates to
variables, the next step is copying the code from a Google
Form into the same code as the map (alternatively, it is
possible to create a custom HTML form that uses the
same POST command to write to the same location). The
id fields of the form that are intended to represent lati-
tude and longitude should be reset to the event variables
that are used to capture latitude and longitude, respectively
(Example 2).

Once the changes to the code have been made and saved,
input to the form posts to the Fusion Table. Each submis-
sion represents one new row in the Fusion Table, and all
form fields are likewise attached to the coordinates, much
like a true desktop GIS stores data to locations. If desired,
the rows can be edited in the Fusion Table without affect-
ing the records in the spreadsheet.

Example 1: Setting listeners for map click events and acquiring values for the variables.

Example 2: Changing the id= field to correspond to the variables for latitude and longitude.

map = new google.maps.Map(document.getElementById('map-canvas'),
 mapOptions);

google.maps.event.addListener(map, 'click', function(event) {
 addMarker(event.latLng, map);
});

google.maps.event.addListener(map, 'click', function(event) {
 var lat = document.getElementById("latbox").value = event.latLng.lat()
 var lng = document.getElementById("lngbox").value = event.latLng.lng()

<form action="https://docs.google.com/forms/d/ldzJ3x3GcOqWzHKmtCPX859mvQvnAcx0-PD6AH8CzaCA/formResponse"
method="POST">
 <spanclass="ss-q-title">Description
 <input type="text" class="ss-q-short" name="entry_180163717" />
 Latitude:
 <input size="19" type="text" id="latbox" class="ss-q-short" name="entry_1739129090" value="">
 Longitude:
 <input size="19" type="text" id="lngbox" class="ss-q-short" name="entry_1554287385" value="">

Cartographic Perspectives, Number 75, 2013 Map-based Input with Google Fusion Tables  –  Shepard | 51

S T Y L I N G T H E I N P U T

Recent issues of Cartographic Perspectives have ad-
dressed Fusion Tables styling options, focused on setting
the styles in the Fusion Table interface and using “buck-
ets” to establish choropleth map color schemes (Peterson
et al. 2012). Adding styles directly to records in the Fusion
Table, however, saves the style and associates it directly
with the data. While this gives significant control to the
developer about how features are displayed, it also restricts
the range of potential map applications that can be built
by limiting the way that the data can be used. Google
Maps API allows application creators to address the issue
of styles based upon their own needs. Just as the previous
steps have outlined the development of a crowd-sourced
database input system, this section anticipates that multi-
ple individuals also want to access the data in their own
ways.

Fusion Tables layers are styled using Google Maps API by
expanding the layer definition section. Rather than calling
the table in one line of code, it is queried and styles are set
by defining the symbol for each feature. Point data markers
are defined in the marker options by using iconName: to
reference an icon by name from Google’s list of markers
and colors. For example, red_blank is a plain red mark-
er symbol, while blu_blank is a plain blue marker sym-
bol. The process of styling polygon data is similar, except

that polygonOptions is used instead of markerOptions,
and, rather than calling a specific icon, the developer de-
fines a fill color using fillColor: and fillOpacity: to
set an HTML color code and opacity level (from 0 to 1),
respectively.

In the example, the Code field is the Fusion Table column
containing descriptions that users selected for point data
when they submitted to the database (Example 3).

Because the previous Google Form input steps provided a
radio button with distinct and mutually exclusive catego-
ries, a user adding data through the map interface is stor-
ing information about feature classes to the database. The
end result is a map that effectively recognizes user-defined
classes (Figure 2).

layer = new google.maps.FusionTablesLayer({
 query: {
 select: 'Number',
 from: 'li_puliVU7S4PwTrdmmYkNsJWUk1B10BxlEhD8'
},

 styles: [
 {where: "'Code' = 1", markerOptions: { iconName: "red_blank"}},
 {where: "'Code' = 2", markerOptions: { iconName: "blu_blank"}},
 {where: "'Code' = 3", markerOptions: { iconName: "grn_blank"}},
]});

layer.setMap(map);

Example 3: Google Maps API Styling from Fusion Table data.

Figure 2: Markers styled according to Google Fusion Table input.

Cartographic Perspectives, Number 75, 201352 | Map-based Input with Google Fusion Tables  –  Shepard

S U M M A RY

Exploiting Google’s services for their robust data
management properties does constrain the developer to
Google’s limitations, such as the exclusive use of a web
Mercator projection in all mapping, or the fact that icons
come from a pre-selected marker list. On the other hand,
a crowd-sourced geospatial data entry project can be es-
tablished quickly and deployed in the cloud using only
the free tools made available by Google. The combination
of Google Fusion Tables, Google Forms, and the Google
Maps API provides a map input tool that circumvents is-
sues associated with setting up and giving user access to a
MySQL database that stores data. Between Google Fusion
Tables and Google Maps API, styling options allow a
developer to query user inputs and customize symbols

automatically based on any set of parameters, potentially
minimizing time demands associated with regularly updat-
ing and managing data appearances on a map. The meth-
ods outlined here are intended to serve as guidance for all
parties, although more advanced developers may seek more
control over the database and styles. Ultimately, small or-
ganizations and individual hobbyists working with crowd-
sourced data input are those most likely to benefit from the
process described here.

Working code from the input example is available from:
http://robshepard.hostzi.com/samplecode.htm, and the
finished map showing the styled Fusion Table data is avail-
able at http://robshepard.hostzi.com/samplecode2.htm.

R E FE R E N C ES

Peterson, Michael, Kelly Koepsell, Gabriel Pereda, and
Spencer Trowbridge. 2012. “Cloud Mapping: Google
Fusion Tables.” Cartographic Perspectives 71:77–90.
http://www.cartographicperspectives.org/index.php/
journal/article/view/cp71-peterson-et-al/html.

Cartographic Perspectives, Number 75, 2013 Map-based Input with Google Fusion Tables  –  Shepard | 53

http://robshepard.hostzi.com/samplecode.htm
http://robshepard.hostzi.com/samplecode2.htm
http://www.cartographicperspectives.org/index.php/journal/article/view/cp71-peterson-et-al/html
http://www.cartographicperspectives.org/index.php/journal/article/view/cp71-peterson-et-al/html

Cartographic Perspectives, Number 75, 201354 | Map-based Input with Google Fusion Tables  –  Shepard

