
© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 43 

ON THE HORIZON

Richard G. Donohue
University of Kentucky
rgdonohue@uky.edu

Carl M. Sack
University of Wisconsin–Madison

cmsack@wisc.edu

Robert E. Roth
University of Wisconsin–Madison

reroth@wisc.edu

Time Series Proportional Symbol Maps 
with Leaflet and jQuery

A S S U M E D  S K I L L S  A N D  L E A R N I N G  O U TCO M ES

The following tutorial describes how to make 
a time series proportional symbol map using the Leaflet 
(leafletjs.com) and jQuery (jquery.com) code libraries. 
The tutorial is based on a laboratory assignment created 
in Spring of 2013 for an advanced class on Interactive 
Cartography and Geovisualization at the University of 
Wisconsin‒Madison (www.geography.wisc.edu/courses/
geog575). This is the first of two On the Horizon tutorials 
on the topic of web mapping, with the next tutorial cov-
ering multivariate choropleth mapping using the D3 li-
brary. Commented source code for the tutorial is available 
through a Creative Commons license at geography.wisc.
edu/cartography/tutorials.

The tutorial assumes a basic understanding of the open web 
platform, particularly the HTML, CSS, and JavaScript 
standards. It also is assumes that you are familiar with the 
manipulation of JavaScript objects as well as jQuery-style 
DOM element selection. Tutorials and reference docu-
mentation for HTML, CSS, and JavaScript are available at 

such resources as developer.mozilla.org, www.lynda.com, 
www.codecademy.com, and www.w3schools.com. Further, 
it is assumed that you are familiar with in-browser devel-
opment tools such as Chrome Developer Tools (develop-
ers.google.com/chrome-developer-tools) or Firebug (get-
firebug.com). Finally, the tutorial assumes that you have 
access to a web server, either running remotely or as a local 
host; MAMP for Mac (www.mamp.info/en) and WAMP 
for Windows (www.wampserver.com/en) are useful for 
this. 

After completing the tutorial, you will be able to:

•	 Work with the GeoJSON data format

•	 Use the Leaflet library to publish a time series propor-
tional symbol map to the web

•	 Create interactivity using mouseover popup windows 
and range sliders

G E T T I N G  S TA R T E D  W I T H  L E A F L E T

Leaflet is one of many code libraries now available for 
publishing slippy maps to the web. Leaflet is a JavaScript 
library pioneered and maintained by Vladimir Agafonkin 
(agafonkin.com/en), and quickly is growing in popularity 
within the web development community because it is both 
lightweight (only 33kb of code at the time of this writ-
ing) and open source (meaning you can both view how it 
functions and extend it to fit your needs). Maps produced 
using Leaflet can load a variety of basemap tile services 
and can draw vector features atop these tiles using the 
SVG (Scalable Vector Graphics) standard. Leaflet is also 

bundled with Mapbox.js (www.mapbox.com/mapbox.js), 
allowing for simple loading and manipulation of custom 
tilesets. Because of the small file size and support of touch-
based interactions, Leaflet is considered among the best 
web mapping libraries when designing for mobile devices. 

The Leaflet library is an open-source project on GitHub 
(github.com/Leaflet) and can be extended through numer-
ous open plugins (leafletjs.com/plugins.html). The goal of 
this tutorial is to provide you with a broad introduction to 
using Leaflet for Web Cartography. The following tutorial 

DOI: 10.14714/CP76.1248

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rgdonohue@uky.edu
mailto:cmsack@wisc.edu
mailto:reroth@wisc.edu
http://leafletjs.com/
http://jquery.com/
http://www.geography.wisc.edu/courses/geog575/
http://www.geography.wisc.edu/courses/geog575/
http://geography.wisc.edu/cartography/tutorials/
http://geography.wisc.edu/cartography/tutorials/
https://developer.mozilla.org/
http://www.lynda.com/
http://www.codecademy.com/
http://www.w3schools.com/
https://developers.google.com/chrome-developer-tools/
https://developers.google.com/chrome-developer-tools/
https://getfirebug.com/
https://getfirebug.com/
http://www.mamp.info/en/
http://www.wampserver.com/en/
http://agafonkin.com/en/
http://www.mapbox.com/mapbox.js/
http://github.com/Leaflet/
http://leafletjs.com/plugins.html


extends the reference and tutorials available at leafletjs.
com/examples.html. There also are supportive communi-
ties for the Leaflet library on Twitter (https://twitter.com/
search?q=%23leaflet) and Stack Overflow (stackoverflow.

com/search?q=leaflet). Refer to these materials for ad-
ditional background and guidance as you complete the 
tutorial.

1.  F I N D I N G  A N D  F O R M AT T I N G  T I M E  S E R I ES  I N F O R M AT I O N

The first step is the assembly of appropriate time se-
ries information (i.e., geographic information that chang-
es over time) to portray on your proportional symbol map. 
Because proportional symbol maps leverage the visual 
variable size, you only should map ordinal, or, preferably, 
numerical data using this thematic map type (i.e., do not 
collect categorical information).

Use your preferred spreadsheet (e.g., as a .csv file) or GIS 
(e.g., as a .shp file) software to prepare your dataset. Format 
the dataset with the unique map features (e.g., cities, re-
gions) included as rows and the unique timestamps (gener-
ically describing either a single moment in time or a time 
interval) included as columns. Be sure to use logical header 
names (such as 2005, 2006, etc.), as these terms serve as 
attribute keys for referencing the time series information 
using JavaScript and will be used to create a temporal leg-
end in the map itself. Because Leaflet natively understands 
the geographic coordinate system, you need to include a 
pair of columns for the latitude and longitude of the pro-
portional symbol anchor (e.g., the city center, the centroid 
of the region). For this tutorial save the latitude value as 
lat the longitude value as lon. Finally, include an addi-
tional pair of columns at the start of your file for a unique 
id number and name field. Figure 1 provides an example 
time series dataset for fifteen major cities in the United 
States.

Next, convert your dataset into the GeoJSON format. 
JSON stands for JavaScript Object Notation and has be-
come a standard format for information loaded into and 
interpreted by a browser. GeoJSON is one geographic vari-
ant of JSON that structures each map feature as an array 

of nodes (lat/long coordinate pairs) defining the complete 
outer boundary of the polygon. 

There are multiple ways to convert your dataset to the 
GeoJSON format, including:

•	 GIS applications such ArcGIS (www.esri.com/soft-
ware/arcgis) or QGIS (www.qgis.org);

•	 Open utilities such as GDAL/OGR (www.gdal.org/
ogr2ogr.html);

•	 Free web services, such as MapShaper (www.map-
shaper.org), ShpEscape (www.shpescape.com), 
ToGeoJSON (togeojson.com), and GeoJSON.io.

Leaflet also includes several methods to load formats other 
than GeoJSON, although these are not discussed in this 
tutorial. An example GeoJSON file (extension .json) for 
the Figure 1 time series dataset is included in the online 
code repository.

2 .  P R E PA R I N G  YO U R  D I R E C TO RY  S T R U C T U R E  A N D  B O I L E R P L AT E

With your time series information processed, it is 
now time to start building your map! Create a directory 
that includes folders named “data,” “css,” “img,” and “js”. 
Because you will be using AJAX requests, we strongly 

recommend that you set up a development server on your 
machine and place this directory on the server, accessing it 
as a localhost. Using your preferred text editor, create three 
new files named index.html (root level), style.css (css folder), 

Figure 1: An Example Time Series Dataset.

Cartographic Perspectives, Number 76, 201344 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.

http://leafletjs.com/examples.html
http://leafletjs.com/examples.html
https://twitter.com/search?q=%23leaflet
https://twitter.com/search?q=%23leaflet
http://stackoverflow.com/search?q=leaflet
http://stackoverflow.com/search?q=leaflet
http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://www.qgis.org/
http://www.gdal.org/ogr2ogr.html
http://www.gdal.org/ogr2ogr.html
http://www.mapshaper.org/
http://www.mapshaper.org/
http://www.shpescape.com/
http://togeojson.com/
GeoJSON.io


and main.js (js folder). Copy your newly created GeoJSON 
file into the data folder. 

Next, add the boilerplate text provided in Example 1 into 
the index.html file. The boilerplate comprises the minimum 
markup of a valid HTML 5 document, with one condi-
tional tag to handle older versions of Internet Explorer 
(EX1: 7–101). The boilerplate also includes references to 
the stylesheets (EX1: 12–14) and scripts (EX1: 17–20) 
that you will be using in your time series proportional 
symbol map. Before moving on, change the content of the 
<title> element (EX1: 5) to something logical for your 
map.

After configuring your directory, acquire the most recent, 
stable version of the Leaflet source code from leafletjs.
com/download.html. Uncompress the downloaded .zip 
file and place the leaflet.css file into the css folder, and the 
Leaflet images folder, leaflet.js, and leafler-src.js files into the 
js folder. While the html boilerplate links to minified leaf-
let.js file (EX1: 19), it is recommended that you reference 

1. This notation is used in the following tutorial for brevity; for example, 
“Example 1: Lines 7–10” will be displayed as “EX1: 7–10.”

the un-minified, human-readable leaflet-src.js file when in-
terpreting Leaflet functionality. 

In addition to the Leaflet source code, you also need to ac-
quire the source code for the jQuery library. jQuery (jque-
ry.com) is a JavaScript plug-in that simplifies accessing 
and manipulating DOM elements for both representation 
and interaction. Additionally, jQuery handles many of the 
browser compatibility issues that otherwise require specif-
ic JavaScript solutions. If you are unfamiliar with jQuery, 
review the jQuery tutorial available at learn.jquery.com/
about-jquery/how-jquery-works/. Download the jQuery 
source code from jquery.com/download/, uncompress the 
downloaded .zip file, and place the jquery.js file in you js 
folder.

Before moving onto the next step, check to see if your 
file structure and webpage files are properly configured. 
The primary method for debugging scripts is by printing 
a message to the error console using the console.log() 
method in JavaScript. To demonstrate its utility, and con-
firm that your webpage is properly configured, add a script 
to print to the console in the main.js file (Example 2).

Example 1: Basic HTML5 Boilerplate, with References to Styles/Scripts (in: index.html).

1<!DOCTYPE html>
2	 <html lang=”en”>
3	 <head>
4		  <meta charset=”utf-8”>
5		  <title>Leaflet Prop Symbol Map</title>	
6	
7		  <!--[if IE]>
8			   <script src=”html5shiv.googlecode.com/svn/trunk/html5.js”>
9			   </script>
10		  <![endif]-->
11		
12		  <!--stylesheets-->
13		  <link rel=”stylesheet” href=”css/leaflet.css”>
14		  <link rel=”stylesheet” href=”css/style.css”>
15	 </head>
16	 <body>
17		  <!--scripts-->
18		  <script src=”js/jquery.js”></script>
19		  <script src=”js/leaflet.js”></script>
20		  <script src=”js/main.js”></script>
21	 </body>
22	 </html>

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 45 

http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://jquery.com/
http://jquery.com/
http://learn.jquery.com/about-jquery/how-jquery-works/
http://learn.jquery.com/about-jquery/how-jquery-works/
http://jquery.com/download/


Once added, open index.html in Firefox; at this point, it 
should be a blank webpage (Figure 2). Activate Firebug 
by clicking the Firebug icon; you may need to Enable All 
Panels in the Firebug dropdown option, if not already en-
abled. Once activated, click the console tab and reload the 
page.

3 .  LOA D I N G  A  B A S E M A P  U S I N G  L E A F L E T

You are now ready to load basemap tiles into your 
webpage using Leaflet. Leaflet allows you to load tiles 
from a variety of sources. An overview of public tile ser-
vices is available on the UW‒Madison GIS Collective 
blog: giscollective.org/tutorials/web-mapping/wmsthree/. 
For Leaflet to use a public tile service, you need to refer-
ence the URL using the following syntax:

{s}.acetate.geoiq.com/tiles/acetate/{z}/{x}/
{y}.png

Every tile in a slippy map is a separate 256 x 256 pixel im-
age—a .png file in the above example syntax. The {s} in-
dicates possible server instances from which the map can 
draw tiles. For each loaded tile, the {z} indicates its zoom 
level, the {x} indicates its horizontal coordinate, and {y} in-
dicates its vertical coordinate. Near all public tile services 
use this z/x/y directory format, which was pioneered by 
Google. The example syntax above loads the minimalist 
Acetate tile service (developer.geoiq.com/tools/acetate) 
from GeoIQ (now Esri); a minimalist tile design is recom-
mended when adding thematic content atop the basemap 
tiles. 

1	 console.log(“hello world!”);

Example 2: Debugging Scripts with the Console (in: main.js).

Figure 2: Debugging using the Error Console in Firebug.

Cartographic Perspectives, Number 76, 201346 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.

http://giscollective.org/tutorials/web-mapping/wmsthree/
http://developer.geoiq.com/tools/acetate/


To load a tileset into Leaflet, first add a <div> element to 
the <body> of index.html, giving it the id attribute map for 
referencing by stylesheets and scripts (EX3: 18). While 
not required, it is good practice to place this <div> within 
a second <div> element named wrapper containing any 
additional page elements you add to your design (EX3: 
17–19).

Next, edit the style.css file to apply style rules for the pair of 
<div> elements, as well as to define the <body> element 
within the index.html document (Example 4). For the 
tutorial example, the wrapper <div> is given a width of 
960px (EX4: 6), a conventional width in web design for 
non-mobile devices, and its left and right margin values 
are set to auto in order to center the wrapper <div> with-
in the webpage (EX4: 7). It is necessary to set the height 
attribute of the map <div> in order for Leaflet to draw the 
map within this container. Note that the width of the map 
<div> will automatically fill 100% of its parent container, 
in this example the wrapper <div>. The height is set to 

Example 3: Adding a <div> Element for the Map (in: index.html).

1	 <!DOCTYPE html>
2	 <html lang=”en”>
3	 <head>
4		  <meta charset=”utf-8”>
5		  <title>Leaflet Prop Symbol Map</title>	
6	
7		  <!--[if IE]>
8			   <script src=”html5shiv.googlecode.com/svn/trunk/html5.js”>
9			   </script>
10		  <![endif]-->
11		
12		  <!--stylesheets-->
13		  <link rel=”stylesheet” href=”css/leaflet.css”>
14		  <link rel=”stylesheet” href=”css/style.css”>
15	 </head>
16	 <body>
17		  <div id=”wrapper”>
18			   <div id=”map”></div>
19		  </div><!-- end wrapper -->
20
21		  <!--scripts-->
22		  <script src=”js/jquery.js”></script>
23		  <script src=”js/leaflet.js”></script>
24		  <script src=”js/main.js”></script>
25	 </body>
26	 </html>

1	 body { 
2	 font-family: sans-serif; 
3	 } 
4	
5	 #wrapper { 
6	  width: 960px; 
7	  margin: 15px auto; 
8	 } 
9
10	 #map { 
11	  height: 450px; 
12	  margin: 15px auto; 
13	 }

Example 4: Styling the <div> Element Containing the Map 
(in: style.css).

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 47 



1	 $(document).ready(function() {
2
3		  var cities;	
4		  var map = L.map(‘map’, { 
5			   center: [37.8, -96], 
6			   zoom: 4,	
7			   minZoom: 4 
8		  });
9	
10		  L.tileLayer( 
11			   ‘{s}.acetate.geoiq.com/tiles/acetate/{z}/{x}/{y}.png’, {
12				    attribution: ‘Acetate tileset from GeoIQ’ 
13			   }).addTo(map);	
14	 });

Example 5: Loading a Basemap using Leaflet (in: main.js).

Figure 3: Loading the Acetate tileset.

Cartographic Perspectives, Number 76, 201348 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.



450px (EX4: 11), and a margin again is used to keep the 
map away from other page elements as well as to center it 
within the page (EX4: 12). The values used for these styles 
are arbitrary, and should be adjusted given the layout of the 
map within your webpage.

With the page elements in place for the map, you now can 
add code to the main.js file for loading a tileset. The main.
js file begins with the jQuery method ready(), which is 
used to ensure that the entire page has finished loading be-
fore the script begins executing (Example 5). The callback 
function() within the ready() method (EX5: 1) must 
be closed at the bottom of the main.js page (EX5: 14). All 
subsequent JavaScript code in the tutorial is written within 
the ready() callback function().

Declare two variables within the ready() callback func-
tion(): (1) cities and (2) map (EX5: 3–8). The unas-
signed cities variable will reference the proportional 

symbols added atop the basemap, as explained later in the 
tutorial. The map object references the Leaflet map class 
(L.Map) itself, to which all mapped data and controls are 
added. The map object allows for configuration of basic 
map parameters, such as the map center (EX5: 5), the 
zoom scale on loading (EX5: 6), and constraints in zoom-
ing interaction (EX5: 7). Review the Leaflet documenta-
tion to learn about additional map parameters that can be 
set using the L.map class (leafletjs.com/reference.html#-
map-usage). The cities and map variables are declared 
with a global scope and therefore are accessible within all 
subsequent method definitions. After the map object is de-
clared and defined, a tileLayer of your choosing can be 
added to the map (EX5: 10–13). Example 5 makes use of 
the aforementioned Acetate tileset.

Save your changes to the main.js file and refresh the index.
html page in the browser. The map <div> element now 
should be populated with the Acetate tileset, including 
basic slippy map interactivity (Figure 3).

4 .  LOA D I N G  T H E  G E OJ S O N

Once you have successfully loaded a tileset into 
your map <div>, the next step is to load the time series 
dataset you prepared in the GeoJSON file into your web-
page; the file is named cityData.json in Example 6. Once 
loaded, this information is used to draw and resize the pro-
portional symbols atop the tile service. 

Use the jQuery function getJSON() to load the GeoJSON 
file (EX6: 1); this code block should be placed within the 
ready() callback function(), after adding the tile-
Layer. The getJSON() method makes an AJAX request to 
a specified file (cityData.json). After the GeoJSON file is 

loaded completely, the data contained in the file is accessi-
ble through the done() method chained to the getJSON() 
method (EX6: 2–4). In this case, the data object, which is 
itself a JSON object, is passed as an argument to the call-
back function(). Use console.log() to confirm that 
the GeoJSON file is loaded correctly (EX6: 3). Finally, an 
alert is sent if the GeoJSON fails to load (EX6: 5).

Save your changes to the main.js file and refresh the index.
html page in the browser. The contents of the GeoJSON 
file now should be logged to the console (Figure 4). 

1	 $.getJSON(“data/cityData.json”)     
2		  .done(function(data) { 
3			   console.log(data); 
4	  	 }) 
5	 .fail(function() { alert(“There has been a problem loading the data.”)});

Example 6: Loading the GeoJSON (in: main.js).

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 49 

http://leafletjs.com/reference.html#map-usage
http://leafletjs.com/reference.html#map-usage


5 .  P R O C ES S I N G  T H E  G E OJ S O N

Once the GeoJSON is loaded, you can use Leaflet to 
immediately draw the geographic linework as SVG mark-
ers atop the tileset (see Step 6 below). However, to improve 
the script’s efficiency, first process the data to derive values 
that will be useful later on. In this tutorial, several pieces of 
information are derived dynamically from the GeoJSON 
so they need not to be hardcoded into the script. These 
data include the timestamp names (i.e., the name of each 
column) for use in a temporal legend and the minimum/
maximum values across the time series for use in a map 
legend.

First remove the console.log() call within the done() 
function (EX6: 3) and replace it with a call to a new func-
tion named processData() (EX7: 3). The function takes 

the data variable holding the loaded GeoJSON as a pa-
rameter. As described below, the processData() function 
returns the derived information as three key value pairs 
stored within a JavaScript object. Declare a new variable 
called info to store the returned values for future use in 
the temporal and map legends.

Next, define the processData()function (Example 8). 
The processData() function begins by defining three 
local variables used to store the derived information (EX8: 
2–4): 1) timestamps (an array holding the time series 
headers from the GeoJSON), 2) min (a number holding 
the lowest value across the time series), and 3) max (a num-
ber holding the highest value across the time series).

Figure 4: Printing the GeoJSON to the console.

Cartographic Perspectives, Number 76, 201350 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.



1	 $.getJSON(“data/cityData.json”)   
2		  .done(function(data) { 
3			   var info = processData(data); 
4	  	 }) 
5	 .fail(function() { alert(“There has been a problem loading the data.”)});

Example 7: Calling the processData() function (in: main.js).

Example 8: Processing the GeoJSON (in: main.js).

1	 function processData(data) {
2		  var timestamps = [];
3		  var min = Infinity; 
4		  var max = -Infinity;
5
6		  for (var feature in data.features) {
7
8			   var properties = data.features[feature].properties; 
9
10			   for (var attribute in properties) { 
11
12				    if ( attribute != ‘id’ &&
13				      attribute != ‘name’ &&
14				      attribute != ‘lat’ &&
15				      attribute != ‘lon’ ) {
16						    
17					     if ( $.inArray(attribute,timestamps) === -1) {
18						      timestamps.push(attribute);		
19					     }
20
21					     if (properties[attribute] < min) {	
22						      min = properties[attribute];
23					     }
24						    
25					     if (properties[attribute] > max) { 
26						      max = properties[attribute]; 
27					     }
28				    }
29			   }
30		  }
31
32		  return {
33			   timestamps : timestamps,
34			   min : min,
35			   max : max
36		  }
37	 }

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 51 



The processData() function then makes use of a nested 
looping structure to determine the values for these three 
local variables. First, a for loop is used to traverse each of 
the features in the data variable, treating each of the map 
features included in the GeoJSON one at a time (EX8: 6). 
Next, the properties associated with the given feature 
(i.e., the header names for all attributes in the GeoJSON) 
are stored in a local variable called properties (EX8: 8). 
A second for loop then is used to traverse through each 
attribute in the properties variable (EX8: 10). In other 
words, this nested looping structure accesses each map fea-
ture in the GeoJSON individually, and then accesses each 
of the attributes associated with a given feature individual-
ly before moving onto the next map feature.

Once a single attribute of a single map feature is iso-
lated using the nested looping structure, the attribute is 
evaluated according to four if statements to determine if 
it influences the derived information (e.g., if it is a new 
timestamp name or the min/max value):

1.	 An if statement first is included to test if the cur-
rent attribute is one of the included timestamps 
(e.g., 2005, 2006), or if it instead is the id, name, 
lat, or long column in the GeoJSON (EX8: 12–
15). You will need to modify the set of conditions 
included in the if statement if you added addition-
al columns to your GeoJSON, or gave the columns 
different header names.

2.	 If the attribute is one of the timestamps (i.e., if it 
conforms to the aforementioned conditions), then 
it is appended to the end of the timestamps array 
(EX8: 18). This push() call is encapsulated within 
an if statement that checks if the given timestamp 
name already has been added to the timestamps 
array (i.e., if 2005 already exists in the array) (EX8: 
17–19); if it does not exist (===), a value of -1 is 
returned and the attribute name is appended to 
the timestamp array.

3.	 Next, an if statement is used to check if the value 
of the current attribute for the current feature 
is smaller than the current value assigned to the 
min variable (EX8: 21–23). If the value is smaller, 
then the min value is replaced with the attribute 
value of the current feature.

4.	 Finally, an if statement is used to check if the value 
of the current attribute for the current feature 
is larger than the current value assigned to the max 
variable (EX8: 25–27). The logic in this if state-
ment is conceptually opposite to that used to up-
date the min variable.

Once the nested looping structure works through all 
properties of all features, the timestamp, min, and max 
variables are returned (EX8: 32–36), concluding the pro-
cessData() function. 

6 .  D R AW I N G  T H E  P R O P O R T I O N A L  S YM B O L S

With the GeoJSON loaded and processed, it is now 
time to add the proportional symbols to the map. Leaflet 
supports the overlay of map symbols, or markers, using ei-
ther pre-rendered iconic point symbols (e.g., in .png for-
mat) or dynamically drawn scalable vector graphics (SVG). 
Because SVG is a vector image format rendered in the 
browser, SVG markers can be easily resized with a change 

in the time series data. This advantage makes SVG the pre-
ferred format for thematic web mapping generally.

To add markers to the map, first return to the done() 
function and note that there are now two local variables 
based on the GeoJSON: (1) the data object containing 
the GeoJSON and (2) the info array containing the three 

Example 9: Calling the createPropSymbols() Function (in: main.js).

1	 $.getJSON(“data/cityData.json”)   
2		  .done(function(data) { 
3			   var info = processData(data);
4			   createPropSymbols(info.timestamps, data);
5	  	 }) 
6	 .fail(function() { alert(“There has been a problem loading the data.”)});

Cartographic Perspectives, Number 76, 201352 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.



derived variables returned by the processData() function 
(Example 9). Following the call to processData(), call 
a new functional named createPropSymbols(), passing 
info.timestamps and data as parameters (EX9: 4). 

Next, define the createPropSymbols() function, add-
ing it after the processData() definition (Example 10). 
Because of the popularity of the GeoJSON format, Leaflet 
offers the method L.geoJson() to create a new GeoJson 
FeatureGroup from the geographic information contained 
within a GeoJSON file. A GeoJson FeatureGroup is a 
specialized type of FeatureGroup , a Leaflet class that is 
used to group multiple map layers together, allowing for the 
group to be treated as one whole programmatically. When 
using Leaflet, a “layer” refers to a single map feature (e.g., a 

point marker, a polygon), meaning that the FeatureGroup 
is closer to the concept of a “layer” or “geometry Collection” 
in GIS software. Refer to the Leaflet documentation for 
additional details about the FeatureGroup class: leaflet-
js.com/reference.html#featuregroup. Create a GeoJson 
FeatureGroup and assign it to the previously declared 
cities variable using L.geoJson(), passing the data 
object as the parameter (EX10: 3). Then call the addTo() 
function, passing the global map variable as the parameter 
in order to place the markers onto the map. 

Save your changes to the main.js file and refresh the index.
html page in the browser. You now should see your map 
features added to the map as inverted teardrop markers, 
the Leaflet default for point features (Figure 5). 

Example 10: Adding Teardrop Markers to the Map (in: main.js).

Figure 5: Adding markers to the map.

1	 function createPropSymbols(timestamps, data) {
2			 
3		  cities = L.geoJson(data).addTo(map); 
4		
5	 }

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 53 

http://leafletjs.com/reference.html#featuregroup
http://leafletjs.com/reference.html#featuregroup


A non-compact, teardrop symbol is not ideal for propor-
tional symbol mapping. Make use of Leaflet’s point-
ToLayer() function to draw custom SVG markers for 
the proportional symbols, rather than using the tear-
drop images (Example 11). Using pointToLayer(), you 
are able to draw each proportional symbol as a Leaflet 

CircleMarker, giving you control over the styling of the 
map symbol. The tutorial example manipulates the color 
(EX11: 8–9), stroke width (EX11: 10), and opacity (EX11: 
11) of the proportional symbols. Additional details about 
the CircleMarker class, are available at: leafletjs.com/ref-
erence.html#circlemarker.

Again save your changes to the main.js file and refresh the 
index.html page in the browser. You now should see your 
map features added as partially transparent blue symbols, 
centered upon the lat/long location of the map feature 
(Figure 6). 

Before moving on, append an additional method on()
to the pointToLayer() callback function, which adds a 
pair of event listeners to open and close the popup win-
dow upon mouseover and mouseout, respectively (EX11: 
12–23). Note that the popup window and content is not 
yet bound to these symbols, which we will do in the subse-
quent steps (see EX13: 14).

Example 11: Replacing teardrop markers with circle markers and adding event listeners for a popup window (in: main.js).

Figure 6: Drawing circles on the map.

1	 function createPropSymbols(timestamps, data) {
2			 
3		  cities = L.geoJson(data, {		
4
5			   pointToLayer: function(feature, latlng) {	
6
7			   return L.circleMarker(latlng, { 
8				     fillColor: “#708598”,
9				     color: ‘#537898’
10				     weight: 1, 
11				     fillOpacity: 0.6 
12				    }).on({
13
14					     mouseover: function(e) {
15						      this.openPopup();
16						      this.setStyle({color: ‘yellow’});
17					     },
18					     mouseout: function(e) {
19						      this.closePopup();
20						      this.setStyle({color: ‘#537898’});
21							     
22					     }
23				    });
24			   }
25		  }).addTo(map);
26	 }

Cartographic Perspectives, Number 76, 201354 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.

http://leafletjs.com/reference.html#circlemarker
http://leafletjs.com/reference.html#circlemarker


7.  S C A L I N G  T H E  P R O P O R T I O N A L  S YM B O L S

After drawing the SVG markers to the map, you now 
need to add the functionality to resize each marker accord-
ing to a value in the time series. Such a function needs to 
be applied uniquely to each CircleMarker layer in the 
newly created cities GeoJson FeatureGroup layer, as 
each proportional symbol on your map has a different set 
of attributes values (i.e., a differently sized proportion-
al symbol), and these values vary different over the time 
series. 

To resize the proportional symbols, first return to the 
createPropSymbols()  function and add a call to 
a new function named updatePropSymbols(). The 
call to this new function should come at the end of the 

createPropSymbols() definition, after the cities 
FeatureGroup is added to the map (EX12: 26). The up-
datePropSymbols() function takes as a parameter the 
value stored in the first index position of the timestamps 
array (i.e., the first date in the time series).

Next, declare and define two new functions: 1) the afore-
mentioned updatePropSymbols() function used to resize 
each proportional symbol individually and 2) a calcPro-
pRadius() function providing the math to compute the 
appropriate size of a proportional symbol given its attri-
bute value (Example 13). These pair of functions should 
be defined in main.js after the createPropSymbols() 
function.

Example 12: Updating the proportional circles by timestamp (in: main.js).

1	 function createPropSymbols(timestamps, data) {
2			 
3		  cities = L.geoJson(data, {		
4
5			   pointToLayer: function(feature, latlng) {	
6
7				    return L.circleMarker(latlng, { 
8			 
9				     fillColor: “#708598”,
10				     color: ‘#537898’
11				     weight: 1, 
12				     fillOpacity: 0.6 
13				    }).on({
14
15					     mouseover: function(e) {
16						      this.openPopup();
17						      this.setStyle({color: ‘yellow’});
18					     },
19					     mouseout: function(e) {
20						      this.closePopup();
21						      this.setStyle({color: ‘#537898’});
22							     
23					     }
24				    });
25			   }
26		  }).addTo(map);
27
28		  updatePropSymbols(timestamps[0]);
29
30	 }

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 55 



The updatePropSymbols() function begins by calling 
the Leaflet eachLayer() method on the cities GeoJson 
FeatureGroup (EX13: 3). The eachLayer() is a simpli-
fied loop offered by Leaflet that applies the same logic 
(here a new function definition) to every layer included 
in a FeatureGroup. Within the new function() defini-
tion, three local variables are defined: 1) props, storing the 
complete set of attributes for the given proportional sym-
bol (EX13: 5), 2) radius, storing the attribute value of the 
proportional symbol for the current timestamp (EX13: 
6), and 3) popupContent, storing the markup text used to 
populate an information window popup (EX13: 7–11). The 
latter variable can be modified to include whatever infor-
mation you wish to present to the user upon probing a pro-
portional symbol.

Note that assignment of the radius variable makes use of 
the custom calcPropRadius() method (EX13: 17–22), 
which takes the attribute value of the proportional sym-
bol and multiplies it against an arbitrary scaleFactor 
(here, the value of 16 is hardcoded given this particular 
sample dataset) to determine the area of proportional cir-
cle (EX13: 19–20). Experiment with the scaleFactor to 

find a value that works well with your dataset; the larger 
the scaleFactor, the larger all proportional symbols will 
be. The radius then is calculated and returned to the up-
datePropSymbols() function, as the CircleMarker class 
scales a marker by a radius value rather than an area value. 
This geometry logic is included in a separate calcPropRa-
dius() function, rather than embedded in the update-
PropSymbols() function, so that it also can be used to re-
size the symbols included in the map legend.

The updatePropSymbols() function proceeds by calling 
two methods from the CircleMarker class on the cur-
rently treated layer: 1) setRadius(), which adjusts the 
size of the proportional symbol (EX13: 13) and 2) bind-
Popup(), which binds the aforementioned popupContent 
markup text to the proportional symbol (EX13: 14). 

Save your changes to the main.js file and refresh the index.
html page in the browser. You now should see your pro-
portional symbols scaling according to the first timestamp 
(Figure 7). Your proportional symbols also should have 
popup functionality to retrieve details about the probed 
symbol.

1	 function updatePropSymbols(timestamp) {
2		
3		  cities.eachLayer(function(layer) {
4	
5			   var props = layer.feature.properties;
6			   var radius = calcPropRadius(props[timestamp]);
7			   var popupContent = “<b>” + String(props[timestamp]) + 
8					     “ units</b><br>” +
9					     “<i>” + props.name +
10					     “</i> in </i>” + 
11					     timestamp + “</i>”;
12
13			   layer.setRadius(radius);
14			   layer.bindPopup(popupContent, { offset: new L.Point(0,-radius) });
15		  });
16	 }
17	 function calcPropRadius(attributeValue) {
18
19		  var scaleFactor = 16;
20		  var area = attributeValue * scaleFactor;
21		  return Math.sqrt(area/Math.PI)*2;			 
22	 }

Example 13: Scaling the proportional circles (in: main.js).

Cartographic Perspectives, Number 76, 201356 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.



8 .  C R E AT I N G  A  M A P  L E G E N D

While the popup window provides a way to deter-
mine the specific value of each proportional symbol, it is 
conventional also to include a persistent map legend indi-
cating the values of several example symbols. The following 
tutorial creates a map legend using HTML elements, in 
this case simple <div> elements styled with the CSS prop-
erty border-radius value of 50%, which rounds the cor-
ners of the <div> elements to make them appear as circles 
(EX16: 19). The calcPropRadius() method then is used 
to dynamically resize the legend symbols. 

First return to the done() function and add a call to a new 
function named createLegend(). The call to this new 

function should follow the existing call to the create-
PropSymbols() function (EX14: 5). The createLegend() 
function takes as parameters the minimum and maximum 
values across the time series, as identified through the pro-
cessData() function.

Next, define the createLegend() function, placing the 
function definition after the calcPropRadius() defini-
tion (Example 15). The createLegend() function makes 
use of the Leaflet L.control() method, which adds a 
new UI element to the map, and the L.DomUtil()method 
for creating a new DOM entity. Read more about these 
methods in the API reference at leafletjs.com/reference.

Figure 7: Scaling the proportional symbols and binding a popup window to symbols.

1	 $.getJSON(“data/cityData.json”)   
2		  .done(function(data) { 
3			   var info = processData(data);
4			   createPropSymbols(info.timestamps, data);
5			   createLegend(info.min,info.max);
6	  	 }) 
7	 .fail(function() { alert(“There has been a problem loading the data.”)});

Example 14: Calling the createLegend() Function (in: main.js).

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 57 

http://leafletjs.com/reference.html#icontrol


html#icontrol and leafletjs.com/reference.html#domutil. 
The createLegend() function begins by assessing the min 
value passed as a parameter, changing it to a value of 10 if 
below 10 so that the small legend symbol remains visible in 
the webpage (EX 15: 3–5). You also can add logic here to 
place a ceiling on the max value, if desired. A local function 
named roundNumber() then is defined that rounds the 
input value to the nearest increment of 10 (EX15: 7–10); 
again, you can adjust this function to round to a different 
value (25, 100, etc.) depending on your time series dataset.

The createLegend()  function proceeds by using 
L.control() to create a new control named legend that 
contains the map legend, setting the position style to 
bottomright on the map (EX15: 12). Leaflet’s onAdd() 
event listener then is attached to the legend control so 
that the legend is configured only after added to the map. 
The onAdd() event listener defines a new function() that 
first declares seven local variables: 

1.	 legendContainer, a wrapper <div> that holds the 
graphic and text elements in the legend (EX15: 
16); note that the DomUtil() function is evoked to 
add the <div> as a page element; 

2.	 symbolsContainer, a <div> that contains the ex-
ample proportional symbols in the legend (EX15: 
17); again, DomUtil() is used to add the <div> to 
the webpage;

3.	 classes, an array holding the values of the min, 
max, and a third value in the middle of the attribute 
range (EX15: 18); this solution produces a legend 
with three example proportional symbols, but can 
be modified to include a different number of exam-
ple symbols;

4.	 legendCircle, an unassigned variable used repeat-
edly to restyle each of the three legend proportion-
al symbols (EX15: 19);

5.	 lastRadius, a variable assigned an initial value 
of zero, which will be used to store the value of the 
previous symbol’s radius while looping through the 
classes array (EX15: 20);

6.	 currentRadius, a unassigned variable used to 
store the current symbol’s radius while looping 
through the classes array (EX15: 21);

7.	 margin, an unassigned variable used to store the 
relative pixel distance of each of the legend’s pro-
portional symbols from the left side of their parent 
container, in order to horizontally align them with 
each other (EX15: 22).

Before adding the logic needed to draw the legend, first 
disable the panning of the tiled basemap underneath the 
legend. To do this, pass the mousedown event into the call-
back function() and use the stopPropagation() meth-
od to prevent the click behavior from being applied to the 
legend’s parent object, the Leaflet map (EX15: 24–26).

Once the mousedown event is disabled, the createLeg-
end() function continues by selecting the newly created 
legendContainer element and adding an h2 header el-
ement to it (EX15: 28). A for loop then is used to iter-
ate through the three values within the classes array and 
to add new <div> elements to the legendContainer and 
provide widths that are proportionate to twice the values 
in the classes array (EX15: 30–47). The for loop first 
creates a new <div> element for the given legend symbol, 
storing it in the previously declared legendCircle variable 
so that CSS rules can be applied to the <div> (EX15: 32). 
The radius of the proportional symbol then is calculat-
ed (EX15: 34). With each iteration through the for loop, 
the value assigned to margin is calculated using the values 
of currentRadius and lastRadius (EX15: 34). Because 
each of the three legendCircle <div> elements is given a 
display property of inline-block (EX16: 22) within the 
external style sheet, they will normally flow alongside each 
other within the layout of the legendContainer. Deriving 
a negative value for the left margin of each allows them 
to be stacked on top of one another and vertically aligned, 
producing a nested display result. As the loop iterates from 
the smallest symbol to the largest, the negative left mar-
gin value is calculated using the current symbol’s width, 
the previous symbol’s width, as well as two additional pixel 
value units to account for the 1px border applied to the 
symbols within the external style sheet (EX16: 20).  The 
newly created legendCircle element is then selected 
using jQuery, given a width attribute based on its current 
radius (multiplied by two in this case to fill the full width 
or diameter of the div element), a height attribute of the 
same value, and the calculated margin value to offset the 
symbol’s margin-left property (EX15: 38–40). The leg-
endCircle then is appended to the symbolsContainer 
and the lastRadius is set to the currentRadius value 
before the loop iterates again.

Cartographic Perspectives, Number 76, 201358 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.

http://leafletjs.com/reference.html#icontrol
http://leafletjs.com/reference.html#domutil


Example 15: Creating a map legend (in: main.js). Continued next page.

1	 function createLegend(min, max) {
2		   
3		  if (min < 10) {	
4			   min = 10; 
5		  }
6
7		  function roundNumber(inNumber) {
8
9				    return (Math.round(inNumber/10) * 10);  
10		  }
11
12		  var legend = L.control( { position: ‘bottomright’ } );
13
14		  legend.onAdd = function(map) {
15
16		  var legendContainer = L.DomUtil.create(“div”, “legend”);  
17		  var symbolsContainer = L.DomUtil.create(“div”, “symbolsContainer”);
18		  var classes = [roundNumber(min), roundNumber((max-min)/2), roundNumber(max)]; 
19		  var legendCircle;  
20		  var lastRadius = 0;
21		  var currentRadius;
22		  var margin;
23
24		  L.DomEvent.addListener(legendContainer, ‘mousedown’, function(e) { 
25			   L.DomEvent.stopPropagation(e); 
26		  });  
27
28		  $(legendContainer).append(“<h2 id=’legendTitle’># of somethings</h2>”);
29		
30		  for (var i = 0; i <= classes.length-1; i++) {  
31
32			   legendCircle = L.DomUtil.create(“div”, “legendCircle”);  
33			 
34			   currentRadius = calcPropRadius(classes[i]);
35			 
36			   margin = -currentRadius - lastRadius - 2;
37
38			   $(legendCircle).attr(“style”, “width: “ + currentRadius*2 + 
39				    “px; height: “ + currentRadius*2 + 
40				    “px; margin-left: “ + margin + “px” );				 
41			   $(legendCircle).append(“<span class=’legendValue’>”+classes[i]+”</span>”);
42
43			   $(symbolsContainer).append(legendCircle);
44
45			   lastRadius = currentRadius;
46
47		  }
48

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 59 



After adding all three proportional symbols to the sym-
bolsContainer <div> and concluding the for loop, the 
symbolsContainer <div> is appended to the legend-
Container <div> (EX15: 49). Finally, the legendCon-
tainer <div> is returned to the legend variable through 
the onAdd() callback function()  (EX15: 51). The 

createLegend() function concludes by adding the leg-
end control to the map (EX15: 55). 

Save your changes to the main.js file and refresh the index.
html page in the browser. You now should see a map legend 
in the bottom, right corner of the map (Figure 8).

49		  $(legendContainer).append(symbolsContainer); 
50
51		  return legendContainer; 
52
53		  };
54
55		  legend.addTo(map);  
56
57	 } // end createLegend()

1	 .legend, .temporal-legend {
2   		  padding: 6px 10px;
3    		  font: 14px/16px Arial, Helvetica, sans-serif;
4   		  background: white;
5    		  background: rgba(255,255,255,0.8);
6    		  box-shadow: 0 0 15px rgba(0,0,0,0.2);
7    		  border-radius: 5px;
8	 }
9	 #legendTitle {
10  	   	 text-align: center;
11   	  	 margin-bottom: 15px;
12   		  font-variant: small-caps;
13	 }
14	 .symbolsContainer {
15    		 float: left;
16		  margin-left: 50px;
17	 }
18	 .legendCircle {
19     	 border-radius:50%; 
20     	 border: 1px solid #537898; 
21     	 background: rgba(113, 133, 152, .6);
22	  	 display: inline-block;
23	 }
24	 .legendValue {
25    		 position: absolute;
26    		 right: 8px;
27	 }

Example 15, continued.

Example 16: Style rules for creating a nested proportional symbol legend using div elements (in: style.css).

Cartographic Perspectives, Number 76, 201360 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.



9.  A D D I N G  A  T E M P O R A L  S L I D E R

The next step in completing the time series proportion-
al symbol map is implementation of a temporal slider for 
displaying the time series. A slider is a UI widget that al-
lows users to set the value of an ordinal or, more common-
ly, numerical variable; checkboxes (allowing compound se-
lection of multiple values) or radio buttons (constraining 
selection to a single value in a set) are used for categorical 
variables. A temporal slider thus allows the user to change 
the current timestamp, updating the map to any point in 
the time series. A slider widget works best for depictions of 
linear time rather than cyclical time, following a timeline 
metaphor rather than a clock metaphor. Several options 
exist for implementing a slider widget within a web page 
(we will implement option 3 in this tutorial):

1.	 jQueryUI is a plugin library for jQuery that sup-
ports a range of common UI widgets. The jQue-
ryUI plugin includes default graphics needed for 
the interface widgets as well as associated events 
and effects for implementing these widgets. Before 
getting started with jQueryUI, review the jQue-
ryUI API Documentation and the jQueryUI demo 
pages at jqueryui.com/.

2.	 noUiSlider is a smaller jQuery plugin written spe-
cifically to create a range slider element, rather than 
the host of UI widgets supported by jQueryUI. The 
code for this plugin is available at: refreshless.com/
nouislider/.

3.	 Finally, the HTML5 specification now includes a 
range type for the <input> element: https://de-
veloper.mozilla.org/en-US/docs/Web/HTML/
Element/Input. The range type makes it easy to 
create a simple slider and apply basic styles to it. 
Note that the range type is a W3C recommen-
dation and still is in the process of gaining sup-
port among web browsers. If support among older 
browsers is important, you may wish to use one of 
the first two plugins mentioned above. Their imple-
mentation will be very similar to the process de-
scribed here.

To implement the temporal slider, return to the done() 
function and add a call to a new function named cre-
ateSliderUI() (EX17: 6). Pass the timestamps array 
as the argument with this function call. This is the last 

Figure 8: Adding a map legend.

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 61 

http://jqueryui.com/
http://refreshless.com/nouislider/
http://refreshless.com/nouislider/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input


function invoked f rom within the done()  callback 
function().

Next, define the createSliderUI() function, placing the 
function definition after the createLegend() definition 
(Example 18). The createSliderUI() function first uses 
the L.Control() method to add a new control named 
sliderControl to the map (EX18: 3). Note that there are 
now two Leaflet controls added to the map: one for the 

map legend and one for the slider control, with the latter 
positioned in the bottom, left corner of the map. 

Leaflet’s onAdd() event listener then is attached to slid-
erControl to configure the temporal slider after it is 
added to the map (EX18: 5–24). The onAdd() event listen-
er first adds a new <input> element to the DOM named 
slider using the L.DomUtil() function (EX18: 7); the 
<input> element is given the class name range-slider 
so that it can be styled. As with the map legend above, the 

1	 $.getJSON(“data/cityData.json”)   
2		  .done(function(data) { 
3			   var info = processData(data);
4			   createPropSymbols(info.timestamps, data);
5			   createLegend(info.min,info.max);
6			   createSliderUI(info.timestamps);
7	  	 }) 
8	 .fail(function() { alert(“There has been a problem loading the data.”)});

1	 function createSliderUI(timestamps) {
2	
3		  var sliderControl = L.control({ position: ‘bottomleft’} );
4
5		  sliderControl.onAdd = function(map) {
6
7			   var slider = L.DomUtil.create(“input”, “range-slider”);
8	
9			   L.DomEvent.addListener(slider, ‘mousedown’, function(e) { 
10				    L.DomEvent.stopPropagation(e); 
11			   });
12
13			   $(slider)
14				    .attr({‘type’:’range’, 
15					     ‘max’: timestamps[timestamps.length-1], 
16					     ‘min’: timestamps[0], 
17					     ‘step’: 1})
18		    		  .on(‘input change’, function() {
19		    		  updatePropSymbols($(this).val().toString());
20		    	 });
21			   return slider;
22		  }
23
24		  sliderControl.addTo(map) 
25	 }

Example 17: Calling the createSliderUI() function (in: main.js).

Example 18: Creating a temporal slider (in: main.js).

Cartographic Perspectives, Number 76, 201362 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.



stopPropagation() method is applied to the slider to 
prevent the click behavior from being propagated to the 
slider’s parent object, the Leaflet map (EX18: 9–11).

Next, two methods are called on the newly created slider 
<input> element using jQuery. First, the attr() method 
is called to set four properties of the slider element: 

1.	 the type, using the aforementioned range type 
(EX18: 14);

2.	 the maximum value of the slider, using the last 
value in the timestamps array (EX18:15)

3.	 the minimum value of the slider, using the first 
value in the timestamps array (EX18: 16);

4.	 the step interval, set to 1 to increment by one year 
for the tutorial example (EX18: 17).

The on() method then is called to listen for any change to 
the slider <input> element (EX18: 18–29). Traditionally 
this is behavior that needed to be written explicitly with 
the jQueryUI or noUiSlider JavaScript plugin, but is now 
supported within the browser itself. On any change to the 
slider (i.e., when the user interacts with it), the update-
PropSymbols() function is called, passing the current 
value of the slider (i.e., the new timestamp value) to the 
updatePropSymbols() function (EX18: 19). Finally, the 
slider is returned to the onAdd() callback function() 
(EX18: 21). The createSliderUI() function concludes 
by calling the addTo() function, adding the sliderCon-
trol to the Leaflet map (EX18: 24). 

Save your changes to the main.js file and refresh the index.
html page in the browser. You now should see the slider 
widget in the bottom, left corner of the map (Figure 9). 
Take a second to play with the slider widget to ensure 
your complete time series dataset is loaded and mapped 
correctly.

Figure 9: Adding a temporal slider.

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 63 



10.  C R E AT I N G  A  T E M P O R A L  L E G E N D

Finally, the temporal slider requires a legend to 
alert the user to the current timestamp portrayed in the 
map. The temporal legend should update as the user in-
teracts with the temporal slider. To create a temporal leg-
end, make several modifications to the createSliderUI() 
function (Example 19):

1.	 First declare a fifth property named value for the 
slider <input> element (EX19: 18). This variable 
will store the name of the current timestamp (i.e., 
the header from your time series dataset). Assign 
the first timestamp as a default.

2.	 Next, add logic to the on() method to update this 
value property when the user changes the position 
of the slider <input> element (EX19: 21). Note 
that this logic actually changes the text of a page 

element with the class name temporal-legend, 
which is an <output> element added to the DOM 
in the subsequently defined createTemporal-
Legend() function. 

3.	 Finally, add a call to this new createTemporal-
Legend() function, passing the first value in the 
timestamps array as a parameter (EX19: 27).

Next, declare the createTemporalLegend() function 
at the bottom of the main.js file. This function is similar 
to the createSliderUI() function. First, a new control 
named temporalLegend is added to the bottom, left cor-
ner of the map using the L.control() method (EX20: 3). 
The onAdd() event listener then is called on the tempo-
ralLegend control, which creates an <output> element 
(a new HTML5 element used to represent the result of 

1	 function createSliderUI(timestamps) {
2	
3		  var sliderControl = L.control({ position: ‘bottomleft’} );
4
5		  sliderControl.onAdd = function(map) {
6
7			   var slider = L.DomUtil.create(“input”, “range-slider”);
8	
9			   L.DomEvent.addListener(slider, ‘mousedown’, function(e) { 
10				    L.DomEvent.stopPropagation(e); 
11			   });
12
13			   $(slider)
14				    .attr({‘type’:’range’, 
15					     ‘max’: timestamps[timestamps.length-1], 
16					     ‘min’: timestamps[0], 
17					     ‘step’: 1,
18					     ‘value’: String(timestamps[0])})
19		    		  .on(‘input change’, function() {
20		    		  updatePropSymbols($(this).val().toString());
21		    			   $(“.temporal-legend”).text(this.value);
22		    	 });
23			   return slider;
24		  }
25
26		  sliderControl.addTo(map)
27		  createTemporalLegend(timestamps[0]); 
28	 }

Example 19: Updating the temporal slider (in: main.js).

Cartographic Perspectives, Number 76, 201364 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.



a calculation or user action) with the class name tempo-
ral-legend in the DOM named output (EX20: 6). The 
output variable storing the element is then passed to the 
jQuery .text() method to place the first timestamp as 
its content (EX20: 7), then returned to the callback func-
tion() (EX20: 8). Finally, the temporalLegend control 

is added to the Leaflet map using the addTo() function 
(EX20: 11).

For one last time, save your changes to the main.js file and 
refresh the index.html page in the browser. Congratulations, 
you have made a time series proportional symbol map 
using Leaflet and jQuery (Figure 10)!

1	 function createTemporalLegend(startTimestamp) {
2
3		  var temporalLegend = L.control({ position: ‘bottomleft’ }); 
4
5		  temporalLegend.onAdd = function(map) { 
6			   var output = L.DomUtil.create(“output”, “temporal-legend”);
7 			   $(output).text(startTimestamp)
8			   return output; 
9		  }
10
11		  temporalLegend.addTo(map); 
12	 }

Example 20: Creating a temporal legend (in: main.js).

Figure 10: Adding a temporal legend.

Cartographic Perspectives, Number 76, 2013 Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al. | 65 



D O I N G  M O R E  W I T H  L E A F L E T  A N D  J Q U E RY

This tutorial presents the process and the tools to 
make a fairly impressive web map depicting time series in-
formation using proportional symbols. However, there are 
many ways you can improve your web map from this base-
line. You may wish to enhance the existing map by con-
textualizing it within a webpage and providing pertinent 
supplemental content. Give the map a good title, cite your 
data sources, and consider how you can use additional text 
to help the map tell a meaningful story. How can the de-
sign of the webpage complement the objectives and aes-
thetics of the map? 

You also may wish to extend the existing map and code, 
either through the representation of additional geograph-
ic information or by the support of additional user inter-
action. For example, consider how you could modify the 
script to add a second dataset of a different nominal type 
(and perhaps style with a different color)? How could you 
then use Leaflet’s built-in methods (leafletjs.com/refer-
ence.html#map-stuff-methods) to provide the user with a 

layer control to toggle these layers on and off? Another op-
tion would be to load in a second areal dataset and provide 
a choropleth map layer beneath the proportional symbols 
(see the Leaflet tutorial for creating an interactive chorop-
leth: leafletjs.com/examples/choropleth.html).

Finally, you may wish to experiment with some of the 
additional features and functionality provided by the 
many Leaflet plugins (see leafletjs.com/plugins.html 
and https://www.mapbox.com/mapbox.js/plugins). If you 
have many point values to visualize, challenge yourself 
to implement the Leaflet heat map solution (www.map-
box.com/mapbox.js/example/v1.0.0/leaflet-heat) or the 
Markercluster plugin (github.com/Leaflet/Leaflet.mark-
ercluster). Reading and understanding other examples and 
solutions will greatly improve your ability to customize a 
map to create compelling graphic narratives. Most impor-
tantly, remember to have fun!

Cartographic Perspectives, Number 76, 201366 | Time Series Proportional Symbol Maps with Leaflet and jQuery  –  Donohue et al.

http://leafletjs.com/reference.html#map-stuff-methods
http://leafletjs.com/reference.html#map-stuff-methods
http://leafletjs.com/examples/choropleth.html
http://leafletjs.com/plugins.html
https://www.mapbox.com/mapbox.js/example/v1.0.0/leaflet-heat/
https://www.mapbox.com/mapbox.js/example/v1.0.0/leaflet-heat/
https://github.com/Leaflet/Leaflet.markercluster
https://github.com/Leaflet/Leaflet.markercluster

