
© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Figure 1: Representation of AJAX and JavaScript consuming web resources and a mashup of the attribute and spatial data in the client.

Cartographic Perspectives, Number 76, 2013 Census Mapping Mashup  –  Hunt | 67

PRACT ICAL CARTOGRAPHER 'S CORNER

Paul Hunt
University of Nebraska Omaha

phunt@unomaha.edu

Census Mapping Mashup

By mandate, the United States Census Bureau compiles and distributes data on the American population. Open data ini-
tiatives have made it possible for users to access and analyze data with simple web-based tools. A new method for request-
ing data from the Census Bureau is described here, along with two different mapping mashups. Using the technology
described in this article, a simple web mapping interface could unlock vast amounts of available data for user exploration.

I N T R O D U C T I O N

The United States Census Bureau collects and
maintains a large, widely-used collection of data on gen-
eral demographic, social, housing, and economic charac-
teristics. Recently, they made their data available through
an Application Programming Interface (API) (US Census
Bureau 2014). Their API is a mechanism to access Census
data through a set of web technologies referred to as AJAX
(Asynchronous JavaScript and XML), which facilitate the
continuous sending and receiving of data between client
and server environments (Powell 2008). The main advan-
tage of using the API is that the Census data are available
for use without the need to store them on a local comput-
er: they remain in the cloud.

JavaScript is the main programming language used
with APIs; most are completely written in JavaScript.

Interpreted by the web browser, JavaScript is also the most
widely used programming language for web development
(Raasch 2013). As an interpreted computer language, there
are no software packages that need to be installed, nor any
special server-side setup. It is an efficient and simple solu-
tion for web-based application development and hosting.

The Esri JavaScript API (Esri 2014a) allows developers
to use web services based on spatial data servers that im-
plement their software. The Esri software packages and
API are popular with government enterprise GIS systems.
Data Driven Documents (D3) is another powerful set of
JavaScript functions used to visualize large datasets. Both
Esri and D3 provide JavaScript-based environments for
creating mapping mashups, which are the pulling together
of various online resources (Batty, et al. 2010).

DOI: 10.14714/CP76.1252

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:phunt%40unomaha.edu?subject=

Two mashup methods are demonstrated here for mapping
Census data obtained from the Census Bureau API. In
the first, the Esri JavaScript API is used to obtain a base-
map from the US Census Bureau TIGERweb spatial data

server (see Figure 1). In the second method, the base layer
for D3 is provided in GeoJSON or TopoJSON format,
which are compatible with JavaScript.

B AC KG R O U N D

For mapping, most APIs are based on a technology
called REST (Representational State Transfer) web ser-
vices, which manipulate representations of web resources
using a uniform set of stateless operations (Fielding 2000).
One of the most popular map service architectures is the
tiled web map service. This type of REST service involves
a series of predefined static map tiles, produced for various
scales, that populate the web map based on user interac-
tion. There are additional REST mapping services, both
raster and vector, that are the primary technology behind
the plethora of Multi-Scale Panable maps available on the
web (Peterson 2014). These mapping APIs provide the
base layer of most map mashups.

There are alternatives for creating web map mashups. The
D3 JavaScript Library can render a projected, SVG map
element (base layer) that can be used to visualize spatial
data (Cuesta 2013). D3 is designed for the creation of dy-
namic visualizations. In addition to mapping APIs, there
are also APIs that revolve around accessing data. Data
APIs focus on delivering specific queried data or streaming
updated data. In a map mashup, these attribute (thematic)
data sources, referred to as operational layers, are overlaid
on top of the base layers.

C E N S U S DATA A P I

As a product of the US Government, Census data have
always been available free of charge. In the Internet era,
there have been two main ways to access the hundreds
of tables and thousands of spatial data elements derived
from the Census. First, there are web-based query and ex-
traction methods, the latest being the American Factfinder.
Secondly, there is direct FTP access to the data that can
then be processed locally within a relational database man-
agement system.

To promote access and innovation, the Census Bureau
released an API in 2012 that would allow users to access
data through properly formatted HTTP requests. This al-
lows for AJAX methods to request and use data on-the-
fly within a mashup environment. The Census API opens
the door for alternative methods for developing mapping
applications.

To make a data request, you must have a properly for-
matted HTTP string. This string begins with the Census
API website, “api.census.gov/data.” Next, the dataset you
are querying is specified (i.e., Census 1990, 2000, 2010 or

ACS aggregate datasets). After this, you must provide your
key, which is required to access the Census API and can be
obtained by completing a short form at www.census.gov/
developers/tos/key_request.html. Finally, the combination
of variables and the spatial units are specified. Queries can
be made directly in your web browser by pasting into your
address bar the example requests listed in Example 1 (you
will need to use your own key provided by the Census). A
partial output of the first request is shown in Example 2:
a two-dimensional array of data in the JSON (JavaScript
Object Notation) format. The first row provides column
names and subsequent rows contain the data values. The
data in this array can then be mapped.

The Census API allows for up to 50 variables to be queried
in a single request; a series of requests can unlock a vast
amount of Census data for user mapping and analysis. In
order to implement the Census API in a JavaScript mash-
up, the jQuery library is needed. JQuery is a free and wide-
ly adopted JavaScript library that has the built-in func-
tions necessary for accomplishing common AJAX requests
(Powell 2008).

Cartographic Perspectives, Number 76, 201368 | Census Mapping Mashup  –  Hunt

api.census.gov/data
www.census.gov/developers/tos/key_request.html
www.census.gov/developers/tos/key_request.html

R E F O R M AT T I N G

Before the data can be mapped, they must first be
properly formatted. The two-dimensional array has cer-
tain limitations and is more usable if it is reformatted as
key-and-value paired objects. In other words, we need to
restructure the data from an array of individual elements
into an array of record-like objects. The function shown in
Example 3 produces the output shown in Example 4.

In this format, the data can be accessed more efficiently
for database operations within a coding environment. As
a two-dimensional array, the data would have to be refer-
enced as a numeric [row], [column] of table elements.
After reformatting, data items can be referenced by name

in a {key: value} pair and more easily mapped using
JavaScript.

M A P P I N G

In order to map the Census data, we need to acquire
a basemap layer. After this, we dynamically join the refor-
matted Census data to their corresponding spatial counter-
parts as attributes. The map symbology (such as a chorop-
leth) is then made based on those joined Census attributes.

M A P P I N G W I T H T H E E S R I J AVA S C R I P T A P I

The Census’ TIGERweb spatial data platform is based
on the Esri ArcGIS Server software, which serves Open

Geospatial Consortium (OGC) compliant spatial data as
web services. Since the data are OGC compliant, a mash-
up could be done by using the OpenLayers API, an open
source JavaScript API used for web mapping and consum-
ing spatial data services. However, since the TIGERweb
services are natively using Esri software, it is simpler to use
Esri’s freely-provided API.

To demonstrate the use of dual web services, the example
here has two parts. First, the page is loaded with spatial

1) URL for 2010 Census SF1 total population and name by for all states:

http://api.census.gov/data/2010/sf1?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=P0010001,NAME&-
for=state:*

2) URL for ACS 2010 5 Year data for Total Population for California and New York:

http://api.census.gov/data/2010/acs5?key=b48301d897146e8f8efd9bef3c6eb1fcb-
864cf&get=B02001_001E,NAME&for=state:06,36

3) URL for ACS 2011 5 Year data for Gross Rent as a % of Household Income, 10.0 to 14.9 percent for all counties
in CA:

http://api.census.gov/data/2011/acs5?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=B25070_003E,NAM
E&for=county:*&in=state:06

4) URL for 2010 Census SF1 white population of 12 year olds in Alabama:

http://api.census.gov/data/2010/sf1?key=[user key]&get=PCT012A015,PCT012A119&for=state:01

[["P0010001" , "NAME" , "state"],
["710231" , "Alaska" , "02"],
["4779736" , "Alabama" , "01"],
["2915918" , "Arkansas" , "05"],
["6392017" , "Arizona" , "04"],
["37253956" , "California" , "06"], ...]

Example 1: Example Census API requests.

Example 2: Results from the first request. This query has returned
the total population (P0010001), state name (NAME), and Federal
Information Processing Standards (FIPS) code (state). The FIPS
code uniquely identifies the spatial unit and is used for joining the
attribute data to the spatial components for mapping.

Cartographic Perspectives, Number 76, 2013 Census Mapping Mashup  –  Hunt | 69

http://api.census.gov/data/2010/sf1?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=P0010001,NAME&for=state:*
http://api.census.gov/data/2010/sf1?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=P0010001,NAME&for=state:*
http://api.census.gov/data/2010/acs5?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=B02001_001E,NAME&for=state:06,36
http://api.census.gov/data/2010/acs5?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=B02001_001E,NAME&for=state:06,36
http://api.census.gov/data/2011/acs5?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=B25070_003E,NAME&for=county:*&in=state:06
http://api.census.gov/data/2011/acs5?key=b48301d897146e8f8efd9bef3c6eb1fcb864cf&get=B25070_003E,NAME&for=county:*&in=state:06
http://api.census.gov/data/2010/sf1?key=[user key]&get=PCT012A015,PCT012A119&for=state:01

data—in this case, data for the con-
tinental 48 states—derived from the
TIGERweb web mapping services
that is being consumed locally. In
Figure 2, a feature has been selected
to show the default popup window
included with the Esri API. Second,
there is a button marked “Map
Census Data” in the top left corner
of the page. Clicking it invokes the
Census Data API AJAX request;
when this button is pressed, the
Census data are requested, reformat-
ted, spatially joined, and symbolized.
The resultant map is shown in Figure
3.

Example 5 shows the combination of
Census and Esri code needed. Notice
in Figure 3 that there is an additional

function getCensusData(){
	 //JQuery AJAX function getting data from the Census API
	 //and call a return function processing the Census JSON object in ‘data’ variable
	 $.getJSON(“http://api.census.gov/data/2010/sf1?key=[user key]&get=P0010001,P0050010,NAME&for=state:*”,
	 function(data){
			 var keys = data[0]; //extract the first row of the returned 2d array that are the column headers
			 var values = data; //copy the array
			 values.splice(0,1); //delete the first row of headers in the copied array
			 arrayCensus = []; //create a new array to store the formatted object outputs
			 //nested loops combining the column header with appropriate values as {key:value} pair objects
			 for(var i = 0 ; i < values.length; i++){
				 var obj = {};
				 for(var j = 0 ; j < values[i].length; j++){
					 obj[keys[j]] = values[i][j];
				 }
				 arrayCensus.push(obj);
		 }
	 });
}

Example 3: Sample function that requests data using the Census API and then reformats the results into a usable array of objects that can be
mapped.

[{ "P0010001" : "4779736" , "NAME" : "Alabama" , "state" : "01" },
{ "P0010001" : "710231" , "NAME" : "Alaska" , "state" : "02" },
{ "P0010001" : "6392017” , "NAME" : "Arizona" , "state" : "04" },
{ "P0010001" : "2915918” , "NAME" : "Arkansas" , "state" : "05" },
{ "P0010001" : "37253956" , "NAME" : "California" , "state" : "06" }, ...]

Example 4: The reformatted Census API request, now an array of objects and ready to be used as a mashup with either the Esri API or D3.

Figure 2: Initial loading of web page with the TIGERweb services.

Cartographic Perspectives, Number 76, 201370 | Census Mapping Mashup  –  Hunt

Figure 3: Map showing Total Hispanic Population (calculated CenData attribute) after Census data request, reformat, join, and symbolization.

<html>
	 <head>
		 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
		 <meta name="viewport" content="initial-scale=1, maximum-scale=1,user-scalable=no">
		 <title> Census API On-Demand Mashup </title>
		 <link rel="stylesheet" href="http://js.arcgis.com/3.8/js/esri/css/esri.css">
		 //link to JQuery library
		 <script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
		 <script src="getCensusData.js"></script>//link to Code 3 example
		 <style> html, body, #map {height: 100%; width: 100%; margin: 0; padding: 0;} </style>
		 <script src="http://js.arcgis.com/3.8/"></script>//link to ESRI API
		 <script>
			 require ([
				 "dojo/parser", "dojo/dom-construct", "dojo/json", "dojo/_base/array", "dojo/_base/connect", "dojo/number",
				 "esri/map", "esri/layers/FeatureLayer", "esri/geometry/Extent", "esri/InfoTemplate" ,
				 "esri/renderers/SimpleRenderer", "dojo/_base/Color", "esri/symbols/SimpleFillSymbol" ,
				 "esri/symbols/SimpleLineSymbol", "dojo/domReady!"
], function (
				 parser, domConstruct, JSON, arr, conn, number, Map, FeatureLayer, Extent, InfoTemplate, SimpleRenderer,
				 Color, SimpleFillSymbol, SimpleLineSymbol

Example 5: A mashup using both the Census and Esri JavaScript APIs to map census data. Continued next page.

Cartographic Perspectives, Number 76, 2013 Census Mapping Mashup  –  Hunt | 71

attribute at the bottom named CenData in the popup
window. The feature symbology is a gradient between two
colors assigned to the minimum and maximum CenData
attribute values (outlined in the code).

M A P P I N G W I T H T H E D 3 J AVA S C R I P T L I B R A RY

The D3/Census Bureau mashup is essentially the same as
above, with two exceptions: the D3 JavaScript library re-
quires data defined in either the GeoJSON or TopoJSON
formats, and D3 has its own AJAX functionality—the
jQuery library is not needed. Example 6 outlines the

process to render the map in Figure 4. To demonstrate dy-
namic field calculation with Census data, percent values
are calculated on-the-fly.

D3 has more robust visualization capabilities because of
its unique data handling functions. For example, the quan-
tize classification utilized in Example 6 removes outliers
in the data range that could skew the color values of the
map symbology. Furthermore, we are using ColorBrewer
(www.colorbrewer.org)’s 9-class “Reds” scheme, which is
integrated into D3.

) {var bounds=new Extent ({//Set spatial extent of map and coordinate system
				 "xmin" : -2473966, "ymin" : -2231235, "xmax" : 2421565, "ymax" : 1922548 ,
				 "spatialReference":{"wkid" : 102004}
			 });
			 var map=new Map("map", {extent : bounds, center : [-96, 41]});
			 //Define States Layer from the Census TIGERweb rest Services
			 var urlSTE=
				 "http://tigerweb.geo.census.gov/arcgis/rest/services/Census2010/tigerWMS_Census2010/MapServer/88";
			 var templateSTE=new esri.InfoTemplate ("${*}");
			 var CensusSTE=new FeatureLayer(urlSTE, {
				 mode : FeatureLayer.MODE_ONDEMAND, outFields:["*"], infoTemplate : templateSTE ,
			 });
			 map.addLayer (CensusSTE); //add layers to map
			 $ ('#submit').click (function(){
				 getCensusData ();//get and format census data with Example 3 example
				 alert ("Getting census data....");
				 DemMin=new Number; DemMax=new Number;
				 //loop through each census object and set min and max value
				 arr.forEach(arrayCensus, function(C){
					 if(C.P0050010 < DemMin){DemMin=C.P0050010 ;}
					 if(C.P0050010 > DemMax){DemMax=C.P0050010 ;}
					 //for each census object,loop through spatial object and join data, add attribute called CenData
					 //CenData represents the Census Variable P0050010 (Total Hispanic Population)
					 arr.forEach(CensusSTE.graphics, function(G){
						 if(G.attributes.GEOID==C.state){
							 G.attributes.CenData=C.P0050010 ;
							 return false ;
						 }
					 });
				 });
				 var renderer=new SimpleRenderer
					 (new SimpleFillSymbol().setOutline(new SimpleLineSymbol().setWidth (0.5)));
						 renderer.setColorInfo ({//set classification values and symbology color information
						 field : "CenData", minDataValue : DemMin, maxDataValue : DemMax,
						 colors : [new Color ([253, 245, 230]), new Color ([139, 126, 102])]
					 });
				 CensusSTE.setRenderer(renderer);
				 CensusSTE.redraw ();
			 });
		 });
	 </script>
</head>
<body> <div id="map"><button id="submit"> Map Census Data </button> </div> </body>
</html>

Example 5, continued.

Cartographic Perspectives, Number 76, 201372 | Census Mapping Mashup  –  Hunt

Figure 4: A mashup map produced with the Census Bureau API and the D3 JavaScript library displaying percent-minority population.

Example 6: Code to combine Census API with the D3 JavaScript library. Continued next page.

<html lang ="en" >
	 <head>
		 <title> D3 Census Mashup </title>
		 <script type ="text/javascript" src ="d3/d3.v3.js" ></script> //link to D3 library
		 //link to FormatCounty(), similiar to Example 3
		 <script type ="text/javascript" src ="d3/Paul_minMaster.js" ></script>
	 </head>
<body> <big> Percent Minority by County
	 <script type ="text/javascript">
		 var w=1000; var h=700 ;
		 var projection=d3.geo.albersUsa().translate([w/2, h/2]) //Define map projection
		 var path=d3.geo.path().projection(projection);
		 var color=d3.scale.quantize() //Define quantize scale to sort data values into classes of color
			 //Colors from ColorBrewer.js, included in the D3 download
			 .range(["#fff5f0", "#fee0d2", "#fcbba1", "#fc9272", "#fb6a4a",
				 "#ef3b2c", "#cb181d", "#a50f15", "#67000d"]);
		 var svg=d3.select("body"). append("svg"). attr("width", w).attr("height", h); //Create SVG element
		 //ajax the Census data - P0010001=Population, P0050003=Non Hispanic White Population
		 d3.json("http://api.census.gov/data/2010/sf1?key=[userkey]&get=P0010001,P0050003,NAME&for=county:* ",
			 function(data) {
				 //call function to format data into array of objects like in Example 3

Cartographic Perspectives, Number 76, 2013 Census Mapping Mashup  –  Hunt | 73

S U M M A RY

A variety of APIs and JavaScript can be used to access
Census data for on-the-fly mapping. With some addition-
al work, an interface that allows the user to specify Census
attributes, color scheme, classification, and spatial units
(i.e., state, county, tract, etc.) could be implemented. This
would unlock the potential of the Census data for spatial
analysis.

Furthermore, the capabilities of D3 could be incorporat-
ed into the Esri JavaScript API to enhance how the data
is visualized. There are current examples of D3 being used
with Esri API on the Esri developers website (Esri 2014b).
Using the technology described in this article, a simple
web mapping interface could permit users to more easily
explore the vast amount of data available from the Census.

R E FE R E N C ES

Batty, Michael, Andrew Hudson-Smith, Richard Milton,
and Andrew Crooks. 2010. “Map Mashups, Web 2.0
and the GIS Revolution.” Annals of GIS 16(1): 1–13.
doi:10.1080/19475681003700831.

Cuesta, Hector. 2013. Practical Data Analysis.
Birmingham, UK: Packt Publishing.

Esri. 2014a. ArcGIS API for JavaScript. Accessed January
21. https://developers.arcgis.com/javascript/jsapi/.

				 var arrayCensus=FormatCounty(data);
				 //loop through census data; create and calculate new normalized variable PerMin(percent minority)
				 for(var i =0 ; i < arrayCensus.length ; i ++){
					 arrayCensus[i].PerMin=1 -(arrayCensus[i].P0050003 / arrayCensus[i].P0010001);
				 }
				 //loop through dataset and calculate input domain min/max value for Quantize color scale
				 var min=parseFloat(arrayCensus[0].PerMin); var max=parseFloat(arrayCensus[0].PerMin);
				 for(var i=0 ; i < arrayCensus.length ; i ++) {
					 pop=parseFloat(arrayCensus[i]. PerMin);
					 if(pop < min) min=pop ;} if(pop > max){max=pop ;}
				 }
				 color.domain([min , max]); //Set the range of values for Quantize classification
				 d3.json("us-counties.json", function(json) { //Load in GeoJSON data
					 //Merge census data and GeoJSON; Loop through once for each data value
					 for(var i=0 ; i < data.length ; i ++) {
						 var dataCnty=arrayCensus[i].GEOID;
						 var dataValue=parseFloat(arrayCensus[i].PerMin); //Grab data value, and convert from string to float
						 //for each census data value loop through counties, find the corresponding county inside the GeoJSON
						 for(var j=0; j < json.features.length ; j ++) {
							 var jsonCnty=json.features[j].id;
							 if(dataCnty == jsonCnty) {
								 json.features[j].properties.value=dataValue ; //Copy the data value into the GeoJSON
								 break ;
					 }	 }	 }
						 svg.selectAll("path") //Bind data and SVG, create one path per GeoJSON feature
					 .data(json.features)
					 .enter()
					 .append("path")
					 .attr("d" , path)
					 .style("fill", function(d) {
							 //Use defined ‘color()’ Quantize scale to symboloze the fill based on census data value
							 var value=d.properties.value ;
							 if(value){return color(value);}
							 else{return "#ccc" ;}
		 });	 });	 });
		 </script>
	 </body>
</html>

Example 6, continued.

Cartographic Perspectives, Number 76, 201374 | Census Mapping Mashup  –  Hunt

http://dx.doi.org/10.1080/19475681003700831
https://developers.arcgis.com/javascript/jsapi/

———. 2014b. SVG and CSS using D3. Accessed April 29.
https://developers.arcgis.com/javascript/jssamples/
styling_svg_quantize.html.

Fielding, Roy Thomas. 2000. “Architectural Styles and
the Design of Network-based Software Architectures.”
PhD diss., University of California, Irvine.

Peterson, Michael P. 2014. Mapping in the Cloud. New
York: Guilford Publications.

Powell, Thomas A. 2008. Ajax: the complete reference. New
York: McGraw-Hill.

Raasch, Jon. 2013. JavaScript Programming Pushing
the Limits: Advanced Application Development with
JavaScript & HTML5. Chichester, England: Wiley.

US Census Bureau. 2014. Access Data with the Census
API. Accessed January 21. http://www.census.gov/
developers/.

Cartographic Perspectives, Number 76, 2013 Census Mapping Mashup  –  Hunt | 75

https://developers.arcgis.com/javascript/jssamples/styling_svg_quantize.html
https://developers.arcgis.com/javascript/jssamples/styling_svg_quantize.html
http://www.census.gov/developers/
http://www.census.gov/developers/

Cartographic Perspectives, Number 76, 201376 | Census Mapping Mashup  –  Hunt

