
© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Cartographic Perspectives, Number 78, 2014

DOI: 10.14714/CP78.1278

Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 57

Carl M. Sack
University of Wisconsin–Madison

cmsack@wisc.edu

Richard G. Donohue
University of Kentucky
rgdonohue@uky.edu

Robert E. Roth
University of Wisconsin–Madison

reroth@wisc.edu

ON THE HORIZON

Interactive and Multivariate Choropleth Maps with D3

A S S U M E D S K I L L S A N D L E A R N I N G O U TCO M ES

The following tutorial describes how to make an
interactive choropleth map using the D3 (Data-Driven
Documents) web mapping library (d3js.org). This tutorial
is based on a laboratory assignment created in the fall of
2014 for an advanced class titled Interactive Cartography
and Geovisualization at the University of Wisconsin–
Madison. This is the second of two On the Horizon tuto-
rials on web mapping and extends a previous tutorial that
used the Leaf let JavaScript library (see Donohue et al.
2013; dx.doi.org/10.14714/CP76.1248). Fully comment-
ed source code for both tutorials is available on GitHub
(github.com/uwcart/cartographic-perspectives). All code
is distributed under a Creative Commons 3.0 license and
available for unconditional use, with the exception of the
files in the lib directory, for which certain license condi-
tions are required as described in the file LICENSE.txt.

This tutorial assumes literacy in JavaScript, HTML, and
CSS programming for the web. In particular, you should
be comfortable with the manipulation of JavaScript arrays
and objects. Free tutorials and reference documentation
for these languages are available at www.w3schools.com.

Additionally, D3 makes heavy use of jQuery-style DOM
element selection and dot syntax (jquery.com). It is further
assumed that you are familiar with in-browser develop-
ment tools such as those provided by Google Chrome (de-
velopers.google.com/chrome-developer-tools), Mozilla
Firefox (developer.mozilla.org/en-US/docs/Tools), and
Firebug (getfirebug.com). An important limitation of D3
is its incompatibility with Microsoft’s Internet Explorer
browser prior to version 9; use of Internet Explorer below
version 10 is not recommended. Finally, the tutorial as-
sumes you have set up a development server running either
remotely or as a localhost. MAMP for Mac (www.mamp.
info/en) and WAMP for Windows (www.wampserver.
com/en) are useful for this.

After completing the tutorial, you should be able to:

• work with the TopoJSON data format;

• use the D3 library to publish a multivariate chorop-
leth map to the web; and

• implement interactivity, including attribute selection,
mouseover highlighting, and dynamic labels.

G E T T I N G S TA R T E D W I T H D3

D3, or Data-Driven Documents, presents a different phi-
losophy of web mapping than the majority of technologies
that currently produce web maps. Leaflet and most other
web mapping libraries produce slippy maps based on sets
of tiled raster images loaded dynamically into the browser
when needed. A common complaint from cartographers
about slippy maps is their virtually universal reliance on
cylindrical projections, most commonly Web Mercator,
which is highly distorted at higher latitudes and inappro-
priate for many forms of data visualization at small map
scales. The D3 alternative utilizes vector graphics rendered

in the browser for the basemap, allowing for dynamic map
projection and direct feature interaction.

D3 is an open source JavaScript library pioneered and
maintained by Mike Bostock of the New York Times (bost.
ocks.org/mike). Increasingly recognized as a leading data
visualization library, D3 simplifies loading and interact-
ing with information. It draws all graphics as client-side
(in the browser) vectors using the SVG (Scalable Vector
Graphics) standard. Maps created using D3 can be trans-
formed into a multitude of projections thanks to the work

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.14714/CP78.1278
mailto:cmsack@wisc.edu
mailto:rgdonohue@uky.edu
mailto:reroth@wisc.edu
http://d3js.org
http://github.com/uwcart/cartographic-perspectives
http://www.w3schools.com
http://jquery.com
https://developers.google.com/chrome-developer-tools
https://developers.google.com/chrome-developer-tools
https://developer.mozilla.org/en-US/docs/Tools
https://getfirebug.com
www.mamp.info/en
www.mamp.info/en
www.wampserver.com/en
www.wampserver.com/en
http://bost.ocks.org/mike
http://bost.ocks.org/mike

Cartographic Perspectives, Number 78, 201458 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

of freelance developer Jason Davies and the proj4.js library
of map projections (trac.osgeo.org/proj4js).

The goal of this tutorial is to provide you with a broad in-
troduction to using D3 for web cartography. The following
tutorial extends two excellent online learning resources:
(1) Mike Bostock’s “Let’s Make a Map” tutorial (bost.

ocks.org/mike/map), and (2) developer Scott Murray’s
e-book Interactive Data Visualization for the Web (chime-
ra.labs.oreilly.com/books/1230000000345); the web ver-
sion is free as of this writing). Refer to these materials for
additional background and guidance as you complete the
tutorial.

1. F I N D I N G A N D F O R M AT T I N G M U LT I VA R I AT E I N F O R M AT I O N

The first step is assembly of appropriate multivariate
(i.e., multiple attributes enumerated over the same set of
spaces) information to portray in a choropleth map. Your
data should be numerical, with attributes (or fields) orga-
nized as separate table columns and each enumeration unit
(region) represented by a single table row. Because enu-
meration units typically vary in size and shape, it is im-
portant to normalize the attribute information according
to a relevant variable (i.e., divide by area, population, etc.).

Although they could be combined into one file, this tu-
torial maintains the attribute data and geographic data
(i.e., the linework) as separate files in order to demonstrate
how to join data from disparate sources together using
JavaScript. This is useful when drawing on data from dy-
namic web services. Prepare your attribute information as
a .csv file using spreadsheet software (e.g., Microsoft Excel,
Google Sheets, OpenOffice Calc). In addition to attribute
columns, the file should include columns for a unique ID,
the name of each enumeration unit, and a code that can be
linked to the geographic dataset.

Figure 1 provides an example multivariate attribute data-
set for the regions of France. The attribute “admin1_code”

will be used to link the attribute dataset to the geograph-
ic dataset in the code. This is a dummy dataset with no
meaning in the real world; you should replace it with data
from a phenomenon that is of interest to you. To avoid
problems in your code later on, be sure the column names
are logical and do not contain spaces or start with a num-
ber or special character. These headers will be used as keys
to reference the data values in your code.

Next, prepare the geographic dataset in GIS software.
For this tutorial, you will convert your geography to
TopoJSON format (github.com/mbostock/topojson/
wiki). TopoJSON is similar to GeoJSON, introduced in
the Leaflet tutorial, but it can have significantly reduced
file sizes and also stores topology: the spatial relationships
of features. Both are variants on JSON, which stands for
JavaScript Object Notation. TopoJSON structures each
map feature as a series of arcs, or lines connecting sets
of nodes, with the node sets stored in a separate object
that indexes the arcs, and a transform equation that sit-
uates the nodes in the coordinate reference system. This
format greatly reduces the data volume and improves
rendering efficiency by storing each arc only once, rather
than duplicating arcs along shared edges. The lightweight
TopoJSON library, available from github.com/mbostock/
topojson, is required to translate the TopoJSON format
for use by D3 or any other web mapping library that can
utilize GeoJSON files.

The sample geography datasets used in this tutorial
(EuropeCountries.topojson and FranceRegions.topojson, in-
cluded in the tutorial source code) were prepared using
two shapef iles downloaded from the Natural Earth
website (www.naturalearthdata.com): one with the na-
tions of Europe as a whole, and one with the regions of
France. A number of technologies may be used to con-
vert data to TopoJSON format, including the TopoJSON
command line tool (available from the wiki cited above),

Figure 1. An example multivariate attribute dataset.

http://trac.osgeo.org/proj4js/
http://bost.ocks.org/mike/map
http://bost.ocks.org/mike/map
http://chimera.labs.oreilly.com/books/1230000000345
http://chimera.labs.oreilly.com/books/1230000000345
https://github.com/mbostock/topojson/wiki
https://github.com/mbostock/topojson/wiki
http://github.com/mbostock/topojson
http://github.com/mbostock/topojson
http://www.naturalearthdata.com

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 59

MapShaper (mapshaper.com), and GeoJSON.io (geojson.
io). To reduce file size, all attribute fields were removed
from the original shapefiles except adm1_code in the re-
gions shapefile and name_long in the countries shapefile.
The shapefiles were converted into TopoJSON files by
first using QGIS to save them as GeoJSON format, then
using MapShaper to convert the GeoJSON to TopoJSON
files (MapShaper will not preserve attributes if used to
directly convert a shapefile to TopoJSON). Note that
the original shapefiles must use an unprojected WGS84

coordinate reference system (EPSG:4326) for the resulting
TopoJSON files to work with D3.

The object structure of the TopoJSON format includes
an outer-level object with the key objects that is not in-
cluded in the GeoJSON specification. For this tutorial,
you will need to ensure that each GeometryCollection
object (analogous to the FeatureCollection level of
a GeoJSON, or layers in a shapefile) has a key that is a
logical name for the feature layer represented by that
GeometryCollection, as shown in Figure 2.

2 . P R E PA R I N G YO U R D I R E C TO RY S T R U C T U R E A N D B O I L E R P L AT E H TM L

With your .csv and TopoJSON (.topojson) f iles pre-
pared, it is now time to start building your map! Create a
directory that includes folders named data, css, js, and lib.
Because you will be loading data from the local directo-
ry asynchronously (after the first code has executed), you
should use a development server or live preview function
of your development software to view your website in the
browser. In the website directory, create three new files
named index.html (root level), style.css (css folder), and main.
js (js folder). Copy your newly created .csv and .topojson

files into the data folder. Add the boilerplate HTML code
provided in Example 1 to the index.html file.

After configuring your directory, acquire three .js files
from Bostock’s GitHub account: (1) d3.v3.js (github.com/
mbostock/d3), containing the D3 visualization library, (2)
topojson.v1.min.js for parsing your TopoJSON file (github.
com/mbostock/topojson), and (3) queue.js (github.com/
mbostock/queue), which will help with asynchronously
loading the data. Save these files to your lib folder and link
to them in index.html (EX1: 11–13).

Figure 2. Manually rename the objects in your TopoJSON file for reference in your code.

http://mapshaper.com
http://geojson.io
http://geojson.io
https://github.com/mbostock/d3
https://github.com/mbostock/d3
https://github.com/mbostock/topojson/
https://github.com/mbostock/topojson/
https://github.com/mbostock/queue
https://github.com/mbostock/queue

Cartographic Perspectives, Number 78, 201460 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

3 . LOA D I N G YO U R .TO P OJ S O N F I L ES I N TO T H E B R OW S E R

The next step is loading the geographic information
assembled in your .topojson files. One of the excellent
code classes provided by D3 includes several methods for
loading various data formats using AJAX (Asynchronous
JavaScript and XML) and parsing the contained informa-
tion into JavaScript arrays. The loaders used here are d3.csv
and d3.json. These methods work even better when used in
conjunction with the queue.js plug-in, as explained below.

Because the data are loaded asynchronously—separately
from the rest of the script, so the browser does not have to
wait for the data to load before displaying the web page—
all code that manipulates the asynchronous data must
be contained within a callback function that is triggered
only after the data are loaded. A callback function can be

specified for each D3 data loader. The downside of this is
that each loader requires a separate callback, requiring you
to nest loaders and callbacks in order to manipulate data
from multiple files.

Example 2 provides the logic needed to initialize the web-
page and print the two .topojson files used in this example
to the console. The queue() method (EX3: 12–16), which
accesses the queue.js plug-in, allows data from multiple files
to be loaded in parallel rather than in series, thus speeding
up the process, and allows you to specify a single callback
function for all data sources. Load the index.html page in
your browser; you now will see the TopoJSON loaded to
the DOM (Figure 3).

4 . D R AW I N G YO U R B A S E M A P

Now that your information is loading properly, it
is time to draw your basemap. The first step in creating
a map or any other visualization using the D3 library is
creation of an HTML element in which to draw the map.
You need not create any elements in index.html; instead
you will use D3 to create a blank svg element for the map
and populate its content. It will be easier to interpret the

following instructions in this subsection if you first review
the SVG specification at www.w3.org/TR/SVG.

Start creation of the choropleth map by drawing its base-
map, or geographic context. The basemap makes use of the
geometry included in EuropeCountries.shp and converted to
the EuropeCountries object in your first TopoJSON. All

1 <!DOCTYPE HTML>
2 <html>
3 <head>
4 <meta charset=”utf-8”>
5 <title>My Coordinated Visualization</title>
6
7 <!--main stylesheet-->
8 <link rel=”stylesheet” href=”css/style.css” />
9 </head>
10 <body>
11 <!--libraries-->
12 <script src=”lib/d3.v3.js”></script>
13 <script src=”lib/topojson.v1.min.js”></script>
14 <script src=”lib/queue.js”></script>
15
16 <!--link to main JavaScript file-->
17 <script src=”js/main.js”></script>
18 </body>
19 </html>

Example 1. Basic HTML5 boiler plate (in: index.html).

http://www.w3.org/TR/SVG/

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 61

1 //begin script when window loads
2 window.onload = initialize();
3
4 //the first function called once the html is loaded
5 function initialize(){
6 setMap();
7 };
8
9 //set choropleth map parameters
10 function setMap(){
11 //use queue.js to parallelize asynchronous data loading
12 queue()
13 .defer(d3.csv, “data/unitsData.csv”) //load attributes from csv
14 .defer(d3.json, “data/EuropeCountries.topojson”) //load
15 .defer(d3.json, “data/FranceRegions.topojson”) //load geometry
16 .await(callback); //trigger callback function once data is loaded
17
18 function callback(error, csvData, europeData, franceData){
19 console.log();
20 };
21 }

Example 2. Loading data files and printing FranceRegions.topojson data to the console (in: main.js).

Figure 3. Printing a TopoJSON to the DOM. The object name should match the name given in Figure 2, which in turn should match the
original shapefile.

Cartographic Perspectives, Number 78, 201462 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

graphics associated with the choropleth view are drawn
within the setMap() function, created in Example 2 and
extended in Example 3. First, set the size of the map view
in pixels (EX3: 3–5). Note the absence of px after each
number, as used in stylesheets; dimensions given without
units to SVG elements will automatically be translated to
pixels.

Next, create an <svg> element to contain the choropleth
map using the d3.select() function (EX3: 7–11). A D3
selection creates an array with one or more DOM elements
to be operated on by subsequent methods. The string pa-
rameter passed to .select() references the DOM ele-
ment to be selected and is therefore called the selector. The
statement d3.select(“body”) is essentially the same as

1 function setMap(){
2
3 //map frame dimensions
4 var width = 960;
5 var height = 460;
6
7 //create a new svg element with the above dimensions
8 var map = d3.select(“body”)
9 .append(“svg”)
10 .attr(“width”, width)
11 .attr(“height”, height);
12
13 //create Europe Albers equal area conic projection, centered on France
14 var projection = d3.geo.albers()
15 .center([-8, 46.2])
16 .rotate([-10, 0])
17 .parallels([43, 62])
18 .scale(2500)
19 .translate([width / 2, height / 2]);
20
21 //create svg path generator using the projection
22 var path = d3.geo.path()
23 .projection(projection);
24
25 //use queue.js to parallelize asynchronous data loading
26 queue()
27 .defer(d3.csv, “data/unitsData.csv”) //load attributes from csv
28 .defer(d3.json, “data/EuropeCountries.topojson”) //load geometry
29 .defer(d3.json, “data/FranceRegions.topojson”) //load geometry
30 .await(callback); //trigger callback function once data is loaded
31
32 function callback(error, csvData, europeData, franceData){
33 //add Europe countries geometry to map
34 var countries = map.append(“path”) //create SVG path element
35 .datum(topojson.feature(
 europeData,europeData.objects.EuropeCountries))
36 .attr(“class”, “countries”) //class name for styling
37 .attr(“d”, path); //project data as geometry in svg
38 };
39 }

Example 3. Extending setMap() to draw the basemap.

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 63

$(“body”) in jQuery; it passes the selector “body” and re-
turns the first matching element in the DOM. Like jQue-
ry, D3 uses dot syntax to string together function calls, an
approach known as method chaining. This code selects the
<body> element of the DOM and adds an <svg> element,
then sets the size to the values already stored in the width
and height variables. This new <svg> element essential-
ly is a container that holds the map geometry. Another
method, selectAll(), can be used to select every match-
ing element in the DOM as well as create new elements
from data. It will be evoked later in the tutorial.

After creating the <svg> container, you then need to indi-
cate how the geographic coordinates should be projected
onto the two-dimensional plane (the computer screen). As
stated in the introduction, one of the exciting things about
D3 for cartographers is its support for an extensive and
growing library of map projections. The list of projections
currently supported by D3, either natively or through the
extended projections plug-in, is available at: github.com/
mbostock/d3/wiki/Geo-Projections. Choose an equal-ar-
ea projection, given the choropleth mapping context.

The following example applies the Albers Equal-Area
Conic projection using d3.geo.albers(), centered on
France (EX3: 13–19); this projection is native to d3.v3.
js. The projection parameters following the function call
apply mathematical transformations to the default Albers
projection:

• .center recenters the map at a given [lon, lat]
coordinate;

• .rotate rotates the globe counter-clockwise (from
the North Pole) given angles of [lon, lat, roll]
away from the geographic center;

• .parallels sets the standard parallels of the projec-
tion, given as [lat1, lat2];

• .scale is the scale of the map, set using an arbitrary
scale factor; and

• .translate adjusts the pixel coordinates of the map’s
center, and always should be set as half the width and
height to keep the map’s center in the center of the
SVG area.

Next, you need to project your geometry according to
these projection parameters. D3 uses a “geo path” SVG el-
ement to render the geometry included in a GeoJSON ob-
ject as SVG. The d3.geo.path() function creates a new

path generator with a default projection of Albers, cen-
tered on the USA. This logic may run counter to previous
experience with JavaScript; if D3 worked like Leaflet, you
might expect that calling d3.geo.path() will return an
object or an array. Instead, d3.geo.path() is a D3 gen-
erator function that creates a new function (the generator)
based on the parameters you send it. You then can store
this generator as a variable, and access the variable like you
would call a function, passing it parameters to manipulate.
Note that the d3.geo.path() function requires that you
specify the previously created projection. Each time the
path generator is used to create a new SVG element (i.e.,
a new graphical layer in the map), the SVG graphics will
be drawn using the projection indicated in the d3.geo.
path() generator function. Hopefully, the idea and usage
of generator functions will become clearer as you proceed
through the tutorial.

First, make use of the d3.geo.path() generator func-
tion to define a path generator that creates projected SVG
paths from the geometry based on your map projection
(EX3: 21–23). Then, make use of this path generator
through the append() function to add an SVG <path>
element containing the geometry derived from your
TopoJSON, projected according to the generator defini-
tion (EX3: 33–37); note that this code should be part of
the callback function, replacing the console.log statement.
The first line adds the <path> element to the DOM and to
the map selection and assigns the new selection to a vari-
able countries (EX3: 34). The second line specifies the
datum() that will be attached to the countries selection
(EX3: 35). In D3 terms, a datum is a unified chunk of
information that can be expressed in SVG form (as in the
singular form of data, not a geometric model of Earth’s
surface). D3’s .append() method returns the new ele-
ment, so the countries selection will reference the append-
ed <path> element and its associated datum.

At this point, it is acceptable to treat the polygons in the
EuropeCountries JavaScript object altogether, as this
is the background context for the choropleth map and
will not be interactive. This is why the append() func-
tion is used, rather than first calling the selectAll(),
data(), and enter() functions (described below). The
datum() function expects a JSON or GeoJSON; to use
the newer TopoJSON format, access the topojson.fea-
ture() method from topojson.js, indicating the object
(EuropeCountries) in the TopoJSON you want translat-
ed. The third line assigns the countries <path> element

https://github.com/mbostock/d3/wiki/Geo-Projections
https://github.com/mbostock/d3/wiki/Geo-Projections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections

Cartographic Perspectives, Number 78, 201464 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

the class name countries so that it can be styled in styles.
css (EX3: 36). In the fourth line, the d attribute contains
a string of information that describes the <path> (see:
developer.mozilla.org/en-US/docs/SVG/Attribute/d)
(EX3: 37). It is for this purpose that the path generator is
so useful: it projects the EuropeCountries geometry and
translates it into an SVG <path> description string.

Altogether, the revisions in Example 3 result in four D3
blocks of chained methods connected by dot syntax to
minimize the file size (8–11; 14–19; 22–23; 33–37). It is
important that you do not place a semicolon between lines
of a block, as this interrupts the block and results in a syn-
tax error. To maximize clarity, the following instructions
designate a variable for each block that creates at least one
new element, with the same variable name as the class

attribute designated for that element, even if that variable
is not accessed again. Now refresh your browser and you
should see a map (Figure 4).

5 . S T Y L I N G YO U R B A S E M A P

With the basemap geometry drawing in the brows-
er, it is now time to style the basemap. Style rules can be
applied to the SVG element containing the projected map
using the countries class reference (EX3: 36). Return to
style.css and add the basic style rules provided in Example
4. These styles add default gray outlines to the countries
as a starting point; continue to improve the applied base-
map styles as you progress through the tutorial.

A nice cartographic function supported by D3 is the abili-
ty to add graticule lines to any map (Example 5). Graticule
methods are included in the D3 Geo Paths documentation
(github.com/mbostock/d3/wiki/Geo-Paths), and an ex-
ample is available at: bl.ocks.org/mbostock/3734308.

To add the graticule to your basemap, begin by creating a
generator called graticule (EX5: 1–3). Where you place
this code matters, as you are conceptually building your
visual hierarchy from the bottom up in the map as you add
new code from the top down in the setMap() function.

The graticule generator should be placed after creating
the path generator, but before loading and processing the
TopoJSON files with queue(); this order will place the
countries above the graticule.

Next, use the path generator to add two SVG elements
named gratBackground (i.e., the water) and gratLines
to the map. First, add gratBackground using the ap-
pend() function and configure its attributes (EX5: 5–9).
Then, add gratLines to the map using selectAll(),
data(), and enter() and configure its attributes (EX5:
11–17). The sequence of these three methods is used to
create multiple new <path> elements at once, and thus to
draw each desired graticule line individually. This is re-
quired by D3 for graticule lines, but also is useful when
individual features are styled differently or are interactive.

Consider carefully the code provided in Example 5, par-
ticularly the final block. It might appear as though D3
warped the space-time continuum to select DOM ele-
ments before they were created. Really, D3 just “sets the
stage” for them. The selectAll() function creates an
empty selection, or a blank array into which will be placed
one element for each graticule line (EX5: 12). The data()
method operates like datum(), but creates undefined
placeholders in the selection array for future elements as-
sociated with each datum (each value or object within the
overall data array) (EX5: 13). The enter() function adds

Figure 4. Drawing the basemap.

Example 4. Basic styles for the countries class (in style.css).

1 .countries {
2 fill: #fff;
3 stroke: #ccc;
4 stroke-width: 2px;
5 }

https://developer.mozilla.org/en-US/docs/SVG/Attribute/d
https://github.com/mbostock/d3/wiki/Geo-Paths
http://bl.ocks.org/mbostock/3734308
https://github.com/mbostock/queue

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 65

each datum to its placeholder in the selection array, chang-
ing the placeholders from undefined to objects, each of
which has a __data__ property that holds the associated
datum (EX5: 14). Every method placed below enter()
will be executed once for each item in the array; you can
think of this as a kind of “for” loop. The append() func-
tion adds a new <path> element for each object in the se-
lection, binding the datum to that element (EX5: 15). The
first attr() call assigns each <path> element a class for
styling purposes (EX5: 16); note that you must assign this
class, as the only function of selectAll(“.gratLines”)
is to select elements that do not exist yet in the DOM. The
second attr() call projects each datum through the path
generator into the d attribute, just as gratBackground and
countries are projected.

Finally, style the gratBackground and gratLines in style.
css using the class names “gratBackground” and “grat-
Lines” (Example 6); you are encouraged to tweak these
styles as your design evolves. Refresh your index.html page
in your browser to view your basemap (Figure 5).

6 . D R A W I N G Y O U R C H O R O P L E T H
M A P

With the basemap context in place, you are
ready to draw your choropleth map. Again, the chorop-
leth map uses the geometry included in FranceRegions.

Example 5. Adding a graticule to setMap() (in: main.js).

Example 6. Styling the graticule (in style.css).

Figure 5. Styling the basemap.

1 .gratBackground {
2 fill: #D5E3FF;
3 }
4
5 .gratLines {
6 fill: none;
7 stroke: #999;
8 stroke-width: 1px;
9 }

1 //create graticule generator
2 var graticule = d3.geo.graticule()
3 .step([10, 10]); //place graticule lines every 10 degrees
4
5 //create graticule background
6 var gratBackground = map.append(“path”)
7 .datum(graticule.outline) //bind graticule background
8 .attr(“class”, “gratBackground”) //assign class for styling
9 .attr(“d”, path) //project graticule
10
11 //create graticule lines
12 var gratLines = map.selectAll(“.gratLines”) //select graticule elements
13 .data(graticule.lines) //bind graticule lines to each element
14 .enter() //create an element for each datum
15 .append(“path”) //append each element to the svg as a path element
16 .attr(“class”, “gratLines”) //assign class for styling
17 .attr(“d”, path); //project graticule lines

Cartographic Perspectives, Number 78, 201466 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

shp and converted to the FranceRegions object in your
second TopoJSON. The FranceRegions object could be
added through the path generator using datum(), as with
EuropeCountries above. Unlike the basemap, however,
each region is unique in both representation and interac-
tion. You need to add each region separately in order to
set different properties and attach different event listeners
to each individual region. Therefore, you need to use the
selectAll(), data(), and enter() methods—much
like you did to draw each graticule line—rather than the
simpler append() and datum() methods—like you did for
drawing the basemap countries and graticule background
(Example 7). A new selection named regions is created
using the selectAll() method and each region is added
to the map by the path generator (EX7: 10–17). It is im-
portant to note that Example 7 must be added within the
callback function, as the TopoJSON must first be pro-
cessed before adding the regions element.

Reload your index.html f ile in your browser; you now
should see your enumeration units plotted atop the base-
map and graticule with a default black fill (Figure 6).

7. R E L AT I N G YO U R .C S V A N D .TO P OJ S O N I N F O R M AT I O N

You now are ready to load the .csv file containing your
multivariate information so that you can color the enu-
meration units according to their unique attribute values.

Example 8 makes use of a file named unitsData.csv. Again
note that this file includes a column with the adm1_code
header for each region (Figure 1), which can be used to

1 //retrieve and process data
2 function callback(error, csvData, europeData, franceData){
3
4 //add Europe countries geometry to map
5 var countries = map.append(“path”) //create SVG path element
6 .datum(topojson.feature(europeData,
 europeData.objects.EuropeCountries))
7 .attr(“class”, “countries”) //class name for styling
8 .attr(“d”, path); //project data as geometry in svg
9
10 //add regions to map as enumeration units colored by data
11 var regions = map.selectAll(“.regions”)
12 .data(topojson.feature(franceData,
 franceData.objects.FranceRegions).features)
13 .enter() //create elements
14 .append(“path”) //append elements to svg
15 .attr(“class”, “regions”) //assign class for additional styling
16 .attr(“id”, function(d) { return d.properties.adm1_code })
17 .attr(“d”, path) //project data as geometry in svg
18
19 };

Example 7. Drawing the choropleth map in setMap() (in: main.js).

Figure 6. Drawing the enumeration units.

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 67

1 queue()
2 .defer(d3.csv, “data/unitsData.csv”) //load attributes data from csv
3 .defer(d3.json, “data/EuropeCountries.topojson”) //load geometry
4 .defer(d3.json, “data/FranceRegions.topojson”) //load geometry
5 .await(callback);
6
7 function callback(error, csvData, europeData, franceData){
8 //variables for csv to json data transfer
9 var keyArray = [“varA”,”varB”,”varC”,”varD”,”varE”];
10 var jsonRegions = franceData.objects.FranceRegions.geometries;
11
12 //loop through csv to assign each csv values to json region
13 for (var i=0; i<csvData.length; i++) {
14 var csvRegion = csvData[i]; //the current region
15 var csvAdm1 = csvRegion.adm1_code; //adm1 code
16
17 //loop through json regions to find right region
18 for (var a=0; a<jsonRegions.length; a++){
19
20 //where adm1 codes match, attach csv to json object
21 if (jsonRegions[a].properties.adm1_code == csvAdm1){
22
23 // assign all five key/value pairs
24 for (var key in keyArray){
25 var attr = keyArray[key];
26 var val = parseFloat(csvRegion[attr]);
27 jsonRegions[a].properties[attr] = val;
28 };
29
30 jsonRegions[a].properties.name = csvRegion.name; //set prop
31 break; //stop looking through the json regions
32 };
33 };
34 };
35
36 //add Europe countries geometry to map
37 var countries = map.append(“path”) //create SVG path element
38 .datum(topojson.feature(europeData, europeData.objects.EuropeCountries))
39 .attr(“class”, “countries”) //assign class for styling countries
40 .attr(“d”, path); //project data as geometry in svg
41
42 //add regions to map as enumeration units colored by data
43 var regions = map.selectAll(“.regions”)
44 .data(topojson.feature(franceData,
 franceData.objects.FranceRegions).features)
45 .enter() //create elements
46 .append(“path”) //append elements to svg
47 .attr(“class”, “regions”) //assign class for additional styling
48 .attr(“id”, function(d) { return d.properties.adm1_code })
49 .attr(“d”, path) //project data as geometry in svg
50 };

Example 8. Relating your .csv and .topojson information within setMap() (in: main.js).

Cartographic Perspectives, Number 78, 201468 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

join each region’s multivariate information in the .csv file
to its geographic information in the .topojson.

Example 8 includes part of Example 2, which shows the
use of the d3.csv function with queue() to load and
parse unitsData.csv. The d3.csv function parses each row
into an object using the column headings as keys, while
queue().await(callback) passes the object to the call-
back function (EX8: 4). In order to attach the multivariate
information from the unitsData.csv to the geographic in-
formation in FranceRegions.topojson, both sets of data must
be accessed from inside the callback function, which must
in turn be fully contained in setMap() to make use of the
generator functions previously created.

In Example 8, a set of nested loops is used to attach the
multivariate information contained in csvData to the
FranceRegions topojson object as properties of each
topojson geometry (feature). First, an array is created
containing the attribute names for the attributes to be
transferred, and the desired topojson geometries array is

assigned to a variable for neatness (EX8: 9–10). An outer
loop then loops through each of the region objects in
the csvData array, assigning each object to the variable
csvRegion and assigning the region’s adm1_code to the
variable csvAdm1 (EX8: 12–15). An inner loop then cycles
through each topojson geometry object, testing whether
that object’s adm1_code matches the adm1_code from the
csvData region (EX8: 17–21). If the region codes match,
a final loop runs through each key in the keyArray and
assigns the corresponding key/value pair from the csvDa-
ta region object to the properties object of the topojson
geometry (EX8: 23–28). Also within the if statement,
the topojson region is assigned the name of the csvRe-
gion (EX8: 30). Once the right match has been found and
attribute values transferred, the jsonRegions loop can be
broken to save on processing time (EX8: 31). If this loop
structure remains unclear, it is recommended that you add
console.log statements line-by-line to inspect how the
.csv and .topojson contents are being manipulated and com-
bined through the nested for loops.

8 . S T Y L I N G YO U R C H O R O P L E T H M A P

Now that the multivariate information in the
unitsData.csv f ile is attached to the FranceRegions
topojson object, you can color each region according to
its unique attribute value. The example csvData.csv file
contains five variables using the column headers “varA”
through “varE” (Figure 1). Before implementing the
choropleth styling solution, you first need to implement a
method for determining which of the five variables should
be represented in the choropleth map.

First, move the keyArray created within the callback in
Example 8 to the top of main.js to make it a global vari-
able (EX9: 2). Since the keys contained by keyArray are
hard-coded strings, they do not actually need to be inside
of the callback. Be sure to move this variable from with-
in the setMap() function to the top of the main.js docu-
ment, rather than duplicating it in both places in your
code. Declare a second global variable, expressed, which

indicates which of the keys in the keyArray is currently in
use for coloring the choropleth map. Set the default index
to 0, or the first attribute in the .csv file. This index value
can be changed later on to sequence through the different
attributes.

Next, you need to add two new functions providing the
logic for styling the choropleth map (Example 10): col-
orScale() and choropleth(). These functions are exter-
nal to the setMap() function. The colorScale() func-
tion (EX10: 1–23) provides the logic for setting the class
breaks using a quantile classification, which divides a vari-
able into a discrete number of classes with each class con-
taining approximately the same number of items. Quantile
classif ication is supported natively by D3 through the
d3.scale.quantile() generator function. Importantly,
the colorScale() function takes the csvData object
from the callback function as a parameter (EX10: 1),

1 //global variables
2 var keyArray = [“varA”,”varB”,”varC”,”varD”,”varE”]; //array of property keys
3 var expressed = keyArray[0]; //initial attribute

Example 9. Global variables for setting the choropleth variable (in: main.js).

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 69

demonstrating the value of the AJAX solution. Because of
this, the call to colorScale() must be added within the
callback function, but before the regions block where the
resulting scale will be used (EX11: 2). The colorScale()
function first creates a d3.scale.quantile() genera-
tor named color and indicates the color scheme for the
choropleth using the range() method, which specifies
the scale’s output (EX10: 3–11); a five-class, purple color
scheme from ColorBrewer (colorbrewer.org) is used here.
The d3.scale.quantile() method also requires an array
of input values, specified using the domain() method. To

determine the quantile class breaks properly, the domain
array must include all of the attribute values for the cur-
rently expressed attribute (note: an equal-interval classifi-
cation can be created by instead passing a two-value array
to domain() with just the minimum and maximum values
of the expressed attribute). A loop through the csvData
is used to push the expressed attribute value for each enu-
meration unit into a single array, which is then passed to
the domain() method (EX10: 13–20). The color genera-
tor is returned to setMap()and stored locally in recolor-
Map (EX10: 19–EX11: 2).

1 function colorScale(csvData){
2
3 //create quantile classes with color scale
4 var color = d3.scale.quantile() //designate quantile scale generator
5 .range([
6 “#D4B9DA”,
7 “#C994C7”,
8 “#DF65B0”,
9 “#DD1C77”,
10 “#980043”
11]);
12
13 //build array of all currently expressed values for input domain
14 var domainArray = [];
15 for (var i in csvData){
16 domainArray.push(Number(csvData[i][expressed]));
17 };
18
19 //pass array of expressed values as domain
20 color.domain(domainArray);
21
22 return color; //return the color scale generator
23 };
24
25 function choropleth(d, recolorMap){
26
27 //get data value
28 var value = d.properties[expressed];
29 //if value exists, assign it a color; otherwise assign gray
30 if (value) {
31 return recolorMap(value);
32 } else {
33 return “#ccc”;
34 };
35 };

Example 10. Functions for styling the choropleth map (in: main.js).

http://www.colorbrewer.org
colorbrewer.org

Cartographic Perspectives, Number 78, 201470 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

The choropleth() function then colors the enumeration
units according to this quantile classification. The choro-
pleth() function is called on the style() method in
the regions block, within the callback function in set-
Map() (EX11: 13–15). The choropleth function takes two
parameters: (1) a datum from the FranceRegions object
associated with a given region (passed through the selec-
tion) and (2) the color generator, stored locally in the re-
colorMap variable. (EX11: 14). The choropleth function
identifies the attribute value of the region under investiga-
tion (EX10: 25) and then checks if a value is valid (EX10:
27). If the value exists, the class color associated with that
value’s quantile is returned (EX10: 28); if it does not, a
default grey is returned (EX10: 30).

Refresh index.html in your browser. Bingo! You now have
a choropleth map (Figure 7).

9. I M P L E M E N T I N G DY N A M I C AT T R I B U T E S E L E C T I O N

With the map drawing properly, you are now ready
to make it interactive. Interactivity changes a comput-
er-generated map from static to dynamic, increasing both
its utility and its aesthetic attraction for the user. D3 al-
lows for an indefinite variety of map interactions, although
implementing interaction behavior is not automatic and
requires some creativity on the part of the developer. This
tutorial will cover two dynamic interactions: user selection

of the represented attribute in this section, and highlight-
ing of individual enumeration units with retrieval of de-
tails about the enumeration unit using a dynamic label.

Dynamic attribute selection requires an input control al-
lowing users to choose the attribute they would like to see
represented in the choropleth map. A simple and appro-
priate HTML input tool is the <select> element, which

1 function callback(error, csvData, europeData, franceData){
2 var recolorMap = colorScale(csvData);
3
4 //EXAMPLE 8 SUPPRESSED FOR SPACE
5
6 var regions = map.selectAll(“.regions”)
7 .data(topojson.feature(franceData,
 franceData.objects.FranceRegions).features)
8 .enter() //create elements
9 .append(“path”) //append elements to svg
10 .attr(“class”, “regions”) //assign class for styling
11 .attr(“id”, function(d) { return d.properties.adm1_code })
12 .attr(“d”, path) //project data as geometry in svg
13 .style(“fill”, function(d) { //color enumeration units
14 return choropleth(d, recolorMap);
15 });
16 };

Example 11. Styling the choropleth map in setMap() (in: main.js).

Figure 7. Styling the choropleth map.

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 71

provides a dropdown menu with a list of options. As de-
scribed above, creating new HTML elements using D3
involves the .append() method. At the end of the call-
back, add a call to a new function called createDrop-
down() and pass it the csvData object as a parameter; de-
fine this function below the setMap() function.

The first block (EX12: 2–7) selects the HTML <body>
element and appends a new <div> element, giving it the
class dropdown so that its position can be adjusted in style.
css. The .html() method is used to simplify the creation
of an <h3> element and its content (the title of the menu)
within the dropdown <div>. The final line of the block
appends a new <select> element (the menu itself). The
second block (EX12: 9–20) then uses .selectAll() to
recursively create each menu item, feeding in the keyAr-
ray so that each string in the array (e.g., “varA”) is used as
a datum for a selection. For each selection, an <option>
element is appended to the parent <select> element, and
the selection’s datum is assigned as the value of the <op-
tion> element’s value attribute. The text content of the
<option> element is assigned using the .text() method,
which contains a function that uses JavaScript string meth-
ods to manipulate the datum for plain English display to

the user (EX12: 15–20). In style.css, a .dropdown selector
should be added with a margin-left property to adjust
the position of the dropdown menu div on the page.

In order to enable the attribute selection dropdown, an
event listener must be added that will update the choro-
pleth map when the user changes the selected attribute.
D3 uses .on() as the primary method for adding event
listeners. This method specifies the type of event and a
function that will execute when the event is fired. HTML
<select> elements use the “change” event to deter-
mine when a user has selected a new menu item. Use the
.on() function to add a “change” event listener and trig-
ger the changeAttribute() function when this event is
fired (EX13: 8–10). The changeAttribute() function
contains the code that restyles the map according to the
selected attribute (EX13: 14–23). First, the expressed
variable is reassigned with the attribute option selected by
the user (EX13: 16). Then, the path elements of all of the
existing regions on the map are selected and restyled by
the choropleth() function using a new color genera-
tor. Recall that the colorScale() function sets the scale
range using the .csv data values of the expressed attribute,
as shown in Example 10.

1 function createDropdown(csvData){
2 //add a select element for the dropdown menu
3 var dropdown = d3.select(“body”)
4 .append(“div”)
5 .attr(“class”,”dropdown”) //for positioning menu with css
6 .html(“<h3>Select Variable:</h3>”)
7 .append(“select”);
8
9 //create each option element within the dropdown
10 dropdown.selectAll(“options”)
11 .data(keyArray)
12 .enter()
13 .append(“option”)
14 .attr(“value”, function(d){ return d })
15 .text(function(d) {
16 d = d[0].toUpperCase() +
17 d.substring(1,3) + “ “ +
18 d.substring(3);
19 return d
20 });
21 };

Example 12. Adding a dropdown menu in setMap() (in: main.js).

Cartographic Perspectives, Number 78, 201472 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

10 . I M P L E M E N T I N G H I G H L I G H T I N G A N D DY N A M I C L A B E L S

There are two steps left for completing the interac-
tive choropleth map: (1) providing visual feedback when
probing an enumeration unit (i.e., highlighting) and (2)
activating a tooltip (i.e., a dynamic label) supporting the
retrieval of details about the probed enumeration unit.
You will create three functions to make these work: (1)
highlight(), which restyles the probed enumeration unit
and populates the content for the dynamic label on mou-
seover (EX14: 11), (2) dehighlight(), which reverts
the enumeration unit back to its original color and deac-
tivates the dynamic label on mouseout (EX14: 12), and
(3) moveLabel(), which updates the position of the dy-
namic label according to changes in the x/y coordinates
of the mouse on mousemove (EX14: 13). The event listen-
ers should be added at the end of the regions block in
setMap() (EX11: 6–15) to make each enumeration unit
in the choropleth interactive, making sure you update the
position of the semicolon that ends the block.

When implementing highlighting across features that are
styled differently (as with the varying color scheme in a

choropleth map), it is necessary to store the original color
of the highlighted feature for when the feature is subse-
quently “dehighlighted”. This approach is faster than re-
processing the JSON object. The solution in Example
14 appends the original color as a text string in a <desc>
SVG element (EX14: 14–17). The contents of the <desc>
element then can be referenced to extract this color when
reverting the enumeration unit to its original choropleth
styling upon dehighlight(). Note that for highlighting
to work properly for all attributes, the <desc> element
should be selected and reset at the end of the block in the
changeAttribute() function, as shown in Example 15.

Once adding the event listeners to the regions block of
setMap(), you then must define the event handler func-
tions. First, add a new function named highlight(),
which should be defined outside of setMap() (EX16:
1–19). The highlight() function receives the data ob-
ject associated with highlighted enumeration unit as the
parameter. The data object’s properties are stored in a
local variable named props (EX16: 3). The highlight()

1 function createDropdown(csvData){
2 //add a select element for the dropdown menu
3 var dropdown = d3.select(“body”)
4 .append(“div”)
5 .attr(“class”,”dropdown”) //for positioning menu with css
6 .html(“<h3>Select Variable:</h3>”)
7 .append(“select”)
8 .on(“change”, function(){
9 changeAttribute(this.value, csvData);
10 });
11
12 //REMAINDER OF EXAMPLE 12 AND EXAMPLE 10 SUPPRESSED FOR SPACE
13
14 function changeAttribute(attribute, csvData){
15 //change the expressed attribute
16 expressed = attribute;
17
18 //recolor the map
19 d3.selectAll(“.regions”) //select every region
20 .style(“fill”, function(d) { //color enumeration units
21 return choropleth(d, colorScale(csvData)); //->
22 });
23 };

Example 13. Adding an event listener and callback function (in: main.js).

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 73

function then calls d3.select() to find the SVG path
for the region, using the adm1_code, and changes its fill
style to black (EX16: 5–6). There are many other possible
highlighting solutions; this one was chosen for simplicity.

The highlight() function then designates two HTML
strings used in the dynamic label, one with the attribute
data (labelAttribute) and one with the region name
(labelName) (EX16: 8–9). Note how the labelAttribute

variable makes use of the global expressed variable to
determine the attribute to include in the label. As above,
you are encouraged to adjust the content of the dynamic
label based on the purpose of your map. Finally, the high-
light() function creates a new <div> element named
infolabel to hold the dynamic label (EX16: 11–19). A
child <div> named labelname is added to infolabel to
position the region name within the label.

1 var regions = map.selectAll(“.regions”)
2 .data(topojson.feature(franceData,
 franceData.objects.FranceRegions).features)
3 .enter() //create elements
4 .append(“path”) //append elements to svg
5 .attr(“class”, “regions”) //assign class for styling
6 .attr(“id”, function(d) { return d.properties.adm1_code })
7 .attr(“d”, path) //project data as geometry in svg
8 .style(“fill”, function(d) { //color enumeration units
9 return choropleth(d, recolorMap);
10 })
11 .on(“mouseover”, highlight)
12 .on(“mouseout”, dehighlight)
13 .on(“mousemove”, moveLabel)
14 .append(“desc”) //append the current color
15 .text(function(d) {
16 return choropleth(d, recolorMap);
17 });

1 function changeAttribute(attribute, csvData){
2 //change the expressed attribute
3 expressed = attribute;
4
5 //recolor the map
6 d3.selectAll(“.regions”) //select every region
7 .style(“fill”, function(d) { //color enumeration units
8 return choropleth(d, colorScale(csvData)); //->
9 })
10 .select(“desc”) //replace the color text in each desc element
11 .text(function(d) {
12 return choropleth(d, colorScale(csvData)); //->
13 });
14 };

Example 14: Adding event listeners to regions in setMap() (in: main.js).

Example 15. Resetting the <desc> element in changeAttribute() (in: main.js).

Cartographic Perspectives, Number 78, 201474 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

Add style rules to the dynamic label in style.css, using the
infolabel and labelname class identifiers. Example 17
provides basic style rules to create a 200×50px dynamic
label with white text and a black background. Note that
the <h1> and tags are styled for the infolabel text
(EX17: 17–26), as these are used in the labelAttribute
HTML string (EX16: 8); you are not limited to these tags
in the design of your dynamic label.

Reload your index.html page in your browser and inspect
your work. At this point, mousing over an individual enu-
meration unit should result in highlighting the unit and
retrieving the associated attribute value in a label (Figure
8a). The dehighlight() function must be implemented
to revert the enumeration unit to its original color and
deactivate the dynamic label (EX16: 21–30). First, the

properties of the data object for the selected enumera-
tion unit are stored in the props variable (EX16: 24). Then
the enumeration unit itself is selected and the text within
its <desc> element is retrieved and assigned to the variable
fillcolor (EX16: 21–30). The selected region is assigned
this color as its fill (EX16: 27). Finally, the dynamic label
is selected using its id and removed (EX16: 29).

Although the enumeration units should now correctly
highlight and dehighlight, the dynamic label is positioned
away from the map itself rather than near the highlighted
region. To make the dynamic label follow the user’s mouse
cursor, first change the positioning of the svg map con-
tainer to absolute in style.css (EX17: 1–3); this should
be defined early in the stylesheet so it may be overridden

1 function highlight(data){
2
3 var props = data.properties; //json properties
4
5 d3.select(“#”+props.adm1_code) //select the current region in the DOM
6 .style(“fill”, “#000”); //set the enumeration unit fill to black
7
8 var labelAttribute = “<h1>”+props[expressed]+
 “</h1>
”+expressed+””; //label content
9 var labelName = props.name; //html string for name to go in child div
10
11 //create info label div
12 var infolabel = d3.select(“body”).append(“div”)
13 .attr(“class”, “infolabel”) //for styling label
14 .attr(“id”, props.adm1_code+”label”) //for label div
15 .html(labelAttribute) //add text
16 .append(“div”) //add child div for feature name
17 .attr(“class”, “labelname”) //for styling name
18 .html(labelName); //add feature name to label
19 };
20
21 function dehighlight(data){
22
23 //json or csv properties
24 var props = data.properties; //json properties
25 var region = d3.select(“#”+props.adm1_code); //select the current region
26 var fillcolor = region.select(“desc”).text(); //access original color from desc
27 region.style(“fill”, fillcolor); //reset enumeration unit to orginal color
28
29 d3.select(“#”+props.adm1_code+”label”).remove(); //remove info label
30 };

Example 16. Highlighting and de-highlighting the choropleth map (in: main.js).

Cartographic Perspectives, Number 78, 2014 Interactive and Multivariate Choropleth Maps with D3 – Sack et al. | 75

by individual class rules. Then, define the moveLabel()
function in main.js that is called on mousemove atop an
enumeration unit (Example 18). The moveLabel() func-
tion uses the d3.event() method to access the current
mouse event (mousemove), which includes mouse coordi-
nate properties (clientX and clientY). The function sim-
ply accesses the mouse coordinates of the event and uses
them to offset the label in relation to the body element,

the lowest DOM element that is relatively positioned. If
you changed the size of the dynamic label in style.css, you
need to adjust the horizontal and vertical label coordinates
according to the revised width and height (EX18: 3–4).
Reload the index.html page; you now should be able to
mouse over each enumeration unit, resulting in highlight-
ing of the enumeration unit and activation of a dynamic
label that follows the mouse (Figure 8b).

1 svg {
2 position: absolute;
3 }
4
5 //EXAMPLES 4 & 6 SUPPRESSED FOR SPACE
6
7 .infolabel {
8 position: absolute;
9 width: 200px;
10 height: 50px;
11 color: #fff;
12 background-color: #000;
13 border: solid thin #fff;
14 padding: 5px;
15 }
16
17 .infolabel h1 {
18 margin: 0;
19 padding: 0;
20 display: inline-block;
21 line-height: 1em;
22 }
23
24 .infolabel b {
25 float: left;
26 }
27
28 .labelname {
29 display: inline-block;
30 float: right;
31 margin: -25px 0px 0px 40px;
32 font-size: 1em;
33 font-weight: bold;
34 position: absolute;
35 }

Example 17. Styling the dynamic label (in: style.css).

Cartographic Perspectives, Number 78, 201476 | Interactive and Multivariate Choropleth Maps with D3 – Sack et al.

D O I N G M O R E W I T H D3

At this point, you should be comfortable with the es-
sential workings of D3’s mapping functionality. This tuto-
rial has covered finding and formatting data, converting
geographic data into GeoJSON and TopoJSON formats,
asynchronously loading data into the browser, using D3
Projections and a D3 Geo Path generator to draw a grat-
icule and basemap, styling the basemap based on one of
multiple attributes, creating a dropdown menu to allow
the user to select between attributes, and implementing
some interactions for retrieving information from the
choropleth map.

Much more can be done with the example data provided
than has been covered here. D3 provides many different
types of visualizations that allow for dynamic data jour-
nalism (for examples: github.com/mbostock/d3/wiki/
Gallery). These may be used independently or have their
interactions linked through the magic of JavaScript. The
authors hope that this toehold into the world of D3 low-
ers the bar for readers seeking to experiment with new
web-mapping technologies, and that you will contribute
to the growing canon of interactive multivariate web maps
that follow sound cartographic principles.

R E FE R E N C E

Donohue R. G., C. M. Sack, and R. E. Roth. 2013.
“Time series proportional symbol maps with Leaflet
and jQuery.” Cartographic Perspectives 76: 43–66. doi:
10.14714/CP76.1248.

1 function moveLabel() {
2
3 var x = d3.event.clientX+10; //horizontal label coordinate
4 var y = d3.event.clientY-75; //vertical label coordinate
5
6 d3.select(“.infolabel”) //select the label div for moving
7 .style(“margin-left”, x+”px”) //reposition label horizontal
8 .style(“margin-top”, y+”px”); //reposition label vertical
9 };

Example 18. Styling the dynamic label (in: main.js).

Figures 8a (left) and 8b (below). Implementing highlighting and tooltips in the choropleth map.

https://github.com/mbostock/d3/wiki/Gallery
https://github.com/mbostock/d3/wiki/Gallery
dx.doi.org/10.14714/CP76.1248
dx.doi.org/10.14714/CP76.1248

