
© by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Cartographic Perspectives, Number 81, 201544 | Mapping Temporal Datasets with D3  –  Butler

DOI: 10.14714/CP81.1332 PRACT ICAL CARTOGRAPHER'S CORNER

Patrick Butler
University of Nebraska at Omaha

pjbutler@unomaha.edu

Mapping Temporal Datasets with D3

I N T R O D U C T I O N

Many JavaScript libraries and APIs intended for
mapping require long lines of code to perform even the
simplest forms of animation. The Data-Driven Documents
(D3) software library, however, offers a very simple op-
tion for quickly presenting a series of maps. D3’s library

contains various features that allow for geographic data
to be bound to SVG objects in a webpage and presented
chronologically. Animations can often be created with one
short line of code.

A N I M AT I N G W I T H D3

D3 was developed primarily by Mike Bostock at
Stanford University in 2011 with the intention of “bring-
ing data to life.” It offers a set of JavaScript functions for
data visualization, which can be accessed by loading the
d3.js library into an HTML document. These functions
allow for the visualization of data sets by binding them to
SVG objects and displaying them in a web browser. SVG
is an XML-based format that allows for vector graphics
to be grouped, styled, and transformed. After the data are
tied to these objects, they may be animated using D3’s
transition method.

The transition method is a special type of selector. Selectors
allow objects in a webpage to be selected and then manipu-
lated. Objects may be selected based upon their properties,
such as tags, classes, attributes, or unique identifiers. Once
a selection is made, operators may then be applied. These
operators may manipulate an object’s attributes, styles, or
text content. They may also join data to the selected ob-
jects. By itself, an ordinary selector applies the subsequent
operations instantaneously. By using the transition meth-
od, instead, the changes will occur gradually over time as
opposed to immediately. When multiple transitions are

Figure 1. Nevada median home values from 2009 to 2012.

Cartographic Perspectives, Number 81, 2015	 Mapping Temporal Datasets with D3  –  Butler | 45

applied, the delay method may then be used to add sep-
aration between each transition. The delay constructor
specifies, in milliseconds, how long the transition should
wait to begin. By pairing each transition with a delay, the
transformation may be specifically timed to string multi-
ple maps together into a smooth animation (see Figure 1).

D3’s user-friendly, minimalist approach allows for the easy
borrowing of code. There are hundreds of examples of D3
maps on websites such as GitHub, and any example from
the Web may be manipulated for use with another data-
set with very little effort. Existing code examples demon-
strate how to use D3 to take raw datasets and bind them
to graphic elements for display in a browser (Figure 2).
To add even more functionality, parts of various existing
scripts can be combined.

 D3 is very efficient, often requiring less code than other
software libraries to accomplish the same task. The selec-
tion methods, for example, allow for elements of a web-
page to be selected and manipulated either individually

or all at once using a single line of code, whereas other
libraries often require a for loop just to select an element
and change one attribute. In addition to these efficiencies,
D3 also offers options such as shape generators, scale con-
structors, and a variety of map projections.

DATA S O U R C ES

Data may be loaded into a webpage via D3 in multiple
formats. D3 can accept GeoJSON and TopoJSON data,
which store the coordinates of geographic features, and are
variants on the JSON (JavaScript Object Notation) for-
mat, which uses simple text to pass attribute data in pairs.
JSON files offer a simple way to organize and store data
into variables and load them quickly in the background
of a webpage. GeoJSON and TopoJSON can also include
non-geographic attributes for each feature. Attribute data
may also be stored separate from geographic data, in a
comma-separated values (CSV) or tab-separated values

(TSV) file. In Example 1, used to create Figure 2, a JSON
file is loaded in which contains the outlines of US counties.

The United States Census Bureau’s American FactFinder
is a great resource for finding datasets with a temporal
component, with thousands of different categories of sta-
tistical data at various levels of spatial resolution. Once
downloaded, some manipulation is necessary for the data
to be properly read by the specific code in Example 1: it
is important to rename the FIPS code field to “id” and
the statistic field title to “rate.” The data can be saved as a
tab-separated file using the extension “.tsv.”

M A P P I N G A N D A N I M AT I O N

Once the data files are in the correct format, they
may be bound to an SVG element and visualized using
D3. SVG uses the path variable to bind it to the county ge-
ometry defined in the JSON file and draw the counties in
a webpage. D3 then uses what it calls a dictionary to relate
the unemployment values in the TSV file to their respec-
tive counties. After data classification using the quantize
function, D3 uses inline CSS, a computer language used

for manipulating the presentation of a webpage, to color
each class (see Example 1). CSS offers many advantages to
web design because it separates the content of a webpage
from its styling.

The animation process begins by drawing the first map.
After this is completed, the map may be redrawn multiple
times and staggered with the delay function. This can be

Figure 2. Mike Bostock’s choropleth map of US unemployment
rates for 2008 demonstrates the binding of data to graphic
elements using D3.

Cartographic Perspectives, Number 81, 201546 | Mapping Temporal Datasets with D3  –  Butler

//Creating choropleth map of U.S. unemployment rates

							 //Define fill colors for 9 possible classes

.q0-9 { fill:rgb(247,251,255); } .q1-9 { fill:rgb(222,235,247); } .q2-9 { fill:rgb(198,219,239); }

.q3-9 { fill:rgb(158,202,225); } .q4-9 { fill:rgb(107,174,214); } .q5-9 { fill:rgb(66,146,198); }

.q6-9 { fill:rgb(33,113,181); } .q7-9 { fill:rgb(8,81,156); } .q8-9 { fill:rgb(8,48,107); }

</style>

<body>

<script src="http://d3js.org/d3.v3.min.js"></script>	 //Load D3 libraries

<script src="http://d3js.org/queue.v1.min.js"></script>

<script src="http://d3js.org/topojson.v1.min.js"></script>	 //Imports external JavaScript file of 			

								 //reusable functions

<script>

  var width = 960, height = 600;					 //Set size of map in pixels

  var rateById = d3.map();		 //Create dictionary to relate counties in JSON to respective values in TSV

  var quantize = d3.scale.quantize()			 //Determine 9 possible classes

   .domain([0, .15])					 //Set domain with maximum and minimum values of dataset

   .range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));

  var projection = d3.geo.albersUsa()		 //Set projection to Alber's Equal Area Conic

   .scale(1280)				 //Preserves area proportionally between two parallels

   .translate([width / 2, height / 2]);	 //Ideal for large areas running east-west, such as U.S.

  var path = d3.geo.path()			 //Create path generator, for JSON geometries to be drawn

   .projection(projection);

  var svg = d3.select("body").append("svg")			 //Select body of DOM, append to SVG element

   .attr("width", width)

   .attr("height", height);

  queue() 						 //Load files, wait for ready function

   .defer(d3.json, "/mbostock/raw/4090846/us.json")

   .defer(d3.tsv, "unemployment.tsv", function(d) { rateById.set(d.id, +d.rate); })

   .await(ready);					 //Populate dictionary with id and rate fields from TSV

  function ready(error, us) {				 //Call JSON file, bind to SVG

   svg.append("g")

   .attr("class", "counties")

   .selectAll("path")

   .data(topojson.feature(us, us.objects.counties).features)			 //Convert JSON to GeoJSON

   .enter().append("path")							 //Bind county data to path

   .attr("class", function(d) { return quantize(rateById.get(d.id)); })	 //Determine each county's class

   .attr("d", path);								 //Draw counties

   svg.append("path")

   .datum(topojson.mesh(us, us.objects.states, function(a, b) { return a !== b; }))

   .attr("class", "states")			 //Mesh state boundaries to prevent duplicate paths for borders

   .attr("d", path); }				 //Draw states

  d3.select(self.frameElement).style("height", height + "px");

</script>

Example 1. Code for Mike Bostock’s U.S. unemployment map.

Cartographic Perspectives, Number 81, 2015	 Mapping Temporal Datasets with D3  –  Butler | 47

done by creating an update function that includes some of
the same code from Example 1, but with a different year’s
dataset (see Example 2). The transition method creates a
pause between the drawings of the two maps. The stan-
dard transition time is 250 milliseconds. By using the delay
method after each transition, that time can be lengthened,
adjusting the speed of the animation.

The addition of the transition and delay components to
each update create the animation. The data update func-
tion may be repeated for the number of time periods
present in the time series. It is important to include the
minimum and maximum values that would be appropri-
ate for the entire series of datasets in the original quantize

function, so that each set is classified in the same way. The
delay time must also be incremented in equal intervals to
form a consistent animation.

The animated map still needs to be paired with a dynam-
ic title. To do this, the span HTML element can be used
(see Example 3). Span, short for spanning, is similar to the
div element, as both are used for organizing and styling
particular pieces of a webpage. The div, or division, ele-
ment is typically for larger areas of a webpage, and may
be made up of many different spans. The span element is
for smaller areas of text. Both allow for specific parts of an
HTML page to be grouped together and easily referred to
later in the document. By adding a span to the h2 element,

//Creating update function

function updateData() {

  queue()

  .defer(d3.json, "us.js")

  .defer(d3.tsv, "unemployment2.tsv", function(d) { rateById.set(d.id, +d.rate); })

  .await(ready);			 //Update script with new dataset

function ready(error, us) {

  svg.append("g")

  .attr("class", "counties")

  .selectAll("path")

  .data(topojson.feature(us, us.objects.counties).features)

  .enter().append("path")

   .transition()				 //Create a brief pause between redrawing of map

   .delay(750)			 	 //Extend pause to 3/4 of a second, increase by

					 	 //equal intervals each update

  .attr("class", function(d) { return quantize(rateById.get(d.id)); })

  .attr("d", path);

  svg.append("path")

  .datum(topojson.mesh(us, us.objects.states, function(a, b) { return a !== b; }))

  .attr("class", "states")

  .attr("d", path);

  updateData();			 //Add to each ready function preceding an update function

}

Example 2. By creating an update function that includes a transition and delay constructor, the map may be continually redrawn using a
new dataset.

Cartographic Perspectives, Number 81, 201548 | Mapping Temporal Datasets with D3  –  Butler

which indicates header text, a new title may be inserted
each time the update function is called. In order to cre-
ate the same animated effect displayed by the map itself,
the transition and delay parameters must be added to each

title as well. By using the same delay timings from each
update function, the titles stagger at the same intervals as
their respective maps.

CO N C L U S I O N

D3 not only transforms raw datasets into static graph-
ics, but also graphics with movement and interactivity. By
using D3’s animation capabilities, a sense of change over
time may be conveyed. Applying a custom dataset to one
of the many D3 map examples on the web is easy; an up-
date function can then be assembled to reload the exist-
ing script with new data. The transition method is used to
redraw the map after the update, and the delay operator

adds timing to the animation to generate a smooth pro-
gression of graphics. The library is simple enough to use
so that anyone with a basic understanding of HTML and
JavaScript can easily turn almost any time series dataset
into an animated map.

A sample animated map, based upon this article, can be
viewed at http://pjbutler.podserver.info/test.html.

S U G G ES T E D R ES O U R C ES

Bostock, Mike. 2012. “Choropleth.” Bl.ocks.org. http://
bl.ocks.org/mbostock/4060606.

Maps on D3 — Tutorial. 2013. Social Innovation
Simulation. http://socialinnovationsimulation.
com/2013/07/11/tutorial-making-maps-on-d3.

<h2>

   //Add to beginning of body

</h2>

d3.select("h2 span”).text("U.S. Unemployment Rates 2010”); //Add to end of ready function

Example 3. By adding a span to the h2 element, the space may be selected in each update function and a dynamic title may be inserted.

