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An Impressionistic Cartographic Solution for Base Map Land 
Cover with Coarse Pixel Data

Several everyday cartography applications do not require sharply precise base maps, and in fact benefit from their gen-
eralization or deliberate obscuration, such as tourist or transit maps. Additionally, raster data fine enough for a given 
map scale are not always available. We present a method of creating an impressionistic land cover base map for topo-
graphic mapping in which the above two conditions are true, using the National Land Cover Database (NLCD) of the 
US Geological Survey (USGS). The method is based on reclassification, upsampling, constrained randomization at class 
boundary edges, and deliberate use of colors with very similar lightness values. The method spans both scientific geospatial 
data treatment and artistic cartographic design, and both generalizes and enhances the data. The processing, automated 
in ArcGIS™, is detailed, and examples of the product are provided.
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I N T R O D U C T I O N
Cartographers often regard the data processing 
and synthesis at the earlier stages of mapmaking as the 
most time-consuming part of the task. Frequently, data 
layers compiled in a geographic information system (GIS) 
start out with different levels of spatial, temporal, and at-
tribute resolution, and resolving these differences involves 
careful analytical consideration. Simplification is typically 
the main approach to take at this point, bringing high-
er-resolution data down to appropriately comparable levels 
of detail as those in the coarser input data.

Occasionally data enhancement is appropriate, albeit 
challenging to achieve or justify in an analytical sense. 
Enhancement as an operation is usually considered to 
be among the set of all generalization operators, though 
it is not typically thought of as an increase in spatial de-
tail. Operations such as displacing buildings away from 
roadways to ensure a visible gap (Neun, Burghardt, & 
Weibel 2009), exaggerations of portions of route networks 
(Reimer 2010), or terrain shading generalizations that 
enhance ridges (Marston & Jenny 2015) each enhance. 
These treatments typically sacrifice achievable planimetric 
accuracy in a small portion of the map (e.g., displacing a 

building by 1 mm at 1:25,000 makes its placement 25 m 
off of its real position), but are regularly considered accept-
able in mapmaking. The readability (i.e., legibility, visual 
hierarchy, and symbol & shape resolution) and aesthet-
ic benefits of making these enhancements outweigh the 
small losses of spatial accuracy they introduce.

We present an automated suite of data processing and map 
design techniques for enhancing raster land cover data for 
cartographic depiction in cases where some boundary ac-
curacy can be sacrificed, such as in general-purpose topo-
graphic mapping. Our method is useful for treating data 
representing classed phenomena, but is particularly well 
suited to cartographic depictions of land cover, where the 
boundaries between classes are often naturally fuzzy (e.g., 
between a grassy field and a forested area). The product 
layer functions best as a translucent base map, and when 
combined with other topographic feature layers such as 
terrain shading and thematic vectors. Figure 1 illustrates 
the product land cover for the area around Hermitage, 
Missouri; the land cover is shown in combination with ter-
rain shading, vector symbols, and an orthoimagery base.
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We developed our method in the context of a redesign of 
the United States Geological Survey (USGS) US Topo 
topographic mapping series. The US Topo 1:24,000 
topographic map series is now served freely online in 
the GeoPDF file format. Several new feature layers have 
been added to the updated map series to reflect user re-
quirements gathered by the USGS (Sugarbaker, Coray, & 
Poore 2009), with most of the new themes illustrated with 
existing federal geospatial datasets. This paper reports on 
our efforts to use National Land Cover Database (NLCD) 
2011 data in 1:24,000 US Topo map series, as well as in 
multi-scale USGS National Map Viewer map products.

Our method arose from the challenge inherent in using 
the 30 m NLCD data at 1:24,000, at which scale they 
appear heavily pixelated (Figure 2). Each pixel prints at a 
size of 1.25 mm, whereas they must be only 0.25 mm to 
ensure that they are barely discernible by the human eye 
at typical viewing distances. Aiming for this size suggests 
that NLCD data are only appropriate for use at 1:120,000 

and smaller cartographic scales. The method we developed 
here simultaneously upsamples classed data in a manner 
related to interpolation or super-resolution techniques 
(Atkinson 2005), as well as offers a set of graphic variable 
decisions for portraying the product raster that remains 
deliberately vague at class borders.

The treatments detailed here both cartographically gen-
eralize and enhance the input classed raster. The number 
of classes is reduced by means of simple reclassification, 
region shapes are simplified using constrained stochastic 
“airbrushing” (as explained below), colors are chosen to 
deliberately ambiguate region borders, and the product is 
at higher pixel resolution than the input. Our method is 
differentiated from other methods proposed for achiev-
ing higher-resolution raster land cover because it explic-
itly takes into account how the product will be depicted 
on a map. The processing is both science and art, in that 
achieving a higher resolution land cover base map is done 
with a stochastic process in precisely-constrained areas of 
the raster, and the symbolization is chosen to create an 
“impressionistic” visualization in the artistic sense.

T H E O R E T I C A L  CO N T E X T  A N D  R E L AT E D  WO R K
Cartographic generalization research has 
been considerably less common on raster than on vector 
datasets. Early work sought to establish frameworks and 
theory on the various kinds of raster generalization possi-
ble (McMaster & Monmonier 1989; Weibel 1992). Land 
cover and digital elevation models (DEMs) have been the 
focus of most cartographic work on raster generalization. 
Monmonier (1983) notes how land cover generalization 
is more naturally approached in the raster domain. He 

describes the process as involving several smoothing and 
aggregation-of-class-region operations, requiring a series 
of criteria choices for such things as region inclusion or 
exclusion, and hierarchical importances across aggregated 
classes, among others. He later (1987) details the need for 
areal displacement when generalizing class regions, com-
paring how continuity is more or less crucial to diverse 
land cover classes and region morphologies. Subsequent 
raster generalization work has focused on using combined 

Figure 1. Hermitage, Missouri.

Figure 2. Unchanged NLCD data shown with transparency over a 
USGS topographic map sheet at 1:24,000.
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vector and raster techniques in categorical generalization 
(Peter & Weibel 1999; Steiniger & Weibel 2005), often 
employing amalgamation techniques borrowed from vec-
tor polygon data treatments (Li & Su 1995; Regnauld 
& Revell 2007; Zhang et al. 2013). Such methods have 
typically been parameterized by cartographic constraints 
(Harrie & Weibel 2007). Researchers have often taken a 
morphological approach, selecting, aggregating, deform-
ing and displacing polygonal raster regions to acceptable 
degrees for generalization (Li 1994; Su & Li 1995; Su et 
al. 1997; Cámara & López 2000). Morphological analy-
sis of raster regions has been applied with direct reference 
to available thematic or geomorphological information 
about each region (Brassel & Weibel 1988; Mackaness & 
Edwards 2002; Gao, Gong, & Li 2004). Researchers have 
also explored the use of morphing techniques for static 
and animated products (Li & Wong 2008; Pantazis et al. 
2009).

A promising approach to land cover mapping is texture 
synthesis, developed in computer graphics, and gaining 
attention in cartographic and geographic information sci-
ence research (Mariethoz & Lefebvre 2014; Dumas et al. 
2015). Jenny, Jenny, and Cron (2012) present an applica-
tion of texture synthesis to cartography, seeking to create 
artistic, “pseudo-natural” maps of land cover by effecting 
gradual transitions between classes. They describe texture 
sythesis by example, a family of techniques in which pixel 
colors are chosen based on a comparison of other pixels 
in the scene in similar spatial arrangement to similar-
ly-colored neighboring pixels. This method is proposed for 
making “transition textures” between classes in land cover 
cartography. They describe map design parameters dictat-
ing where such textures could be used (224):

To avoid a technical look of the land cover cat-
egory boundary, the subtextures could dissolve 
into subtexture islands. The number and size of 
these subtexture islands within the neighbour-
ing subtexture should be arranged naturally; 
e.g., become smaller with increasing distance 
from the boundary. The width of this patchy 
transition zone should appear plausible. The 
boundary between the subtextures should vary 
naturally (e.g., undulate), but also must not di-
verge too much from the category boundary 
defined in the underlying land cover dataset.

Their experimental techniques have been applied to car-
tographic panorama views (Jenny & Jenny 2013). An ap-
proach with similar realism and creative license is taken 
by Patterson (2002), and applied to small-scale land cover 
in combination with terrain shading for the US National 
Atlas (2013). While these techniques are promising, they 
do not address increases in pixel resolution.

Overcoming the limitations of fixed numbers and sizes of 
pixels—that is, getting more pixels and therefore high-
er-fidelity samples—in remote sensing equipment and data 
has been a focus of much research for the past three-or-so 
decades (Cracknell 1998; Campbell and Wynne 2011). 
Hardware solutions include the creation of smaller sensor 
elements or larger sensor arrays (along with appropriate 
optical lenses), but these solutions are either impractical, 
prone to noise, or expensive, for technical reasons beyond 
the scope of this article. Software image-processing meth-
ods have been favored due to the difficulties of hardware 
solutions, with algorithms proposed from diverse imaging 
fields such as medical microscopy, computer vision, and 
geospatial remote sensing. Much of the research on im-
proving pixel-based land cover classification in recent de-
cades has focused on mixed pixels, which are those pixels 
whose spectral profiles are produced by an aggregation of 
multiple land cover types present in that pixel’s instanta-
neous field of view (IFOV). These are distinct from pure 
pixels, wherein the land cover types present in the IFOV 
are relatively uniform. Mixed pixels occur at any spatial 
resolution (i.e., pixel size), “often at the edges of large par-
cels or along long linear features, such as rivers or high-
ways, where contrasting brightnesses are immediately ad-
jacent to one another” (Campbell & Wynne 2011, 291). 
A greater proportion of mixed pixels in a scene leads to 
greater inaccuracies in classified products (Smith et al. 
2003; Latifovich & Olthof 2004) because there is more 
uncertainty in the image (Congalton et al. 2014). Efforts 
to determine the contents of mixed pixels have typically 
sought to establish probabilities for the presence of each 
of a set of land cover types in a given pixel, with relative 
probabilities calculated using linear and non-linear math-
ematical models (Marsh et al. 1980; Ichoku & Karnieli 
1996; Mather & Tso 2009; Roy et al. 2014; Chen et al. 
2015; Imbiriba et al. 2016). Recent research has focused on 
machine learning techniques (e.g., active learning, neural 
networks, support vector machines), where algorithms are 
trained on curated datasets before being used on pre-clas-
sified data (Foody & Mather 2004; Tuia et al. 2011; Samat 
et al. 2014; 2016). Foody (1999) states that training sets 
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emphasizing raster region border pixels (i.e., where mixed 
pixels typically occur) tend to give classification neural 
networks more generalizable knowledge.

In remote sensing and other imaging disciplines, meth-
ods that attempt to resolve variations smaller than the 
sensor pixel size are referred to as super-resolution. Super-
resolution methods generally take advantage of aliasing 
in the captured image (i.e., distortion and mis-identifi-
cation of signals in the image due to insufficient resolu-
tion), which is what causes mixed pixels. These are distinct 
from interpolation, which can increase resolution but does 
not recover fluctuations unresolved by the sensor. Super-
resolution algorithms employ a wide diversity of approach-
es (see Tian & Ma [2011] and Nasrollahi & Moeslund 
[2014] for comprehensive reviews), but can generally be di-
vided among those that function on single or multiple im-
ages, and then again on those that function in the spatial 
domain of the pixels (i.e., the pixel values in topological 
and metric relation to each other) and those that operate 
in the frequency domain (i.e., on the pixels after a suitable 
mathematical transform, such as the Fourier transform or 
wavelet analysis). Most algorithms in the literature and in 
imaging practice operate in the spatial domain (Nasrollahi 
& Moeslund 2014). The theoretical approach taken is gen-
erally to regard the given image(s) as a decimated prod-
uct of either the higher- or infinitely-detailed, hypothet-
ical original scene after some mathematical function, the 

function modeling the optical and/or sampling process 
that produced the existing, low-resolution image. Images 
at some higher target resolution are then derived by the-
oretical reconstruction of the original scene; much of the 
diversity of the methods developed over the years is in how 
reconstruction occurs.

One of the earliest super-resolution methods developed 
was applied to Landsat 4 data, which featured multiple 
translated views of the same areas of the Earth (Tsai & 
Huang 1984). Single-image methods typically take a more 
purely theoretical approach, often using machine-learning 
techniques applied to preprepared training data (Freeman 
et al. 2002; Yang et al. 2010; Kwon et al. 2015), using re-
petitive adjacency patterns within a single image (Glasner, 
Bagon, & Irani 2009), or taking advantage of repetitive 
texture elements in the image (Park et al. 2010). Such 
methods may also apply distortions and noise to the input 
image to generate hypothetical other images of the same 
scene (Nasrollahi & Moeslund 2014), in order to obtain 
a set from which to reconstruct a high-resolution scene. 
Reconstruction of the hypothetical high-resolution image, 
especially in the context of facial recognition applications, 
is sometimes termed “hallucination” (Baker & Kanade 
2002). Super-resolution methods work with the ratio lu-
minance pixel values, not nominal or ordinal data such as 
classed land cover images.

M E T H O D
We create a generalized land cover map layer, using 
constrained stochastic raster region edge enhancement 
and color symbolization to deliberately obfuscate and soft-
en land cover class boundaries. The resulting map layer is 
produced at a finer resolution, and yields an impression-
istic or painterly representation of generalized land cover. 
Since the resulting land cover layer is an image, it lends 
itself easily to standard image zooming and resampling 
as will happen in a multi-scale interactive mapping in-
terface (i.e., scale-space theory transformations apply: see 
Lindeberg [2008; 2014]). Zooming is a certain context in 
which the land cover layer is meant to be used, since it 
would be served digitally in zoomable PDF media.

Our method involves several raster data operations, each 
of which is either a generalization or an enhancement 

of the data. First, a suitable target resolution of the ras-
ter data for use in the map product is calculated using the 
output map scale and the graphic resolution of the map 
medium (Tobler 1987). For mapping at 1:24,000, we use 
a target resolution of 2 meters. Classed land cover as well 
as percent canopy and impervious surface data layers from 
the 2006 NLCD are used. Because the first data layer 
is nominal and the latter two are ratio, their processing 
progresses in independent threads until the final stages of 
land cover layer production.

All processes are automated using a single Python script 
within ArcGIS™, making the method amenable to large 
map series production. All of the processes described 
here use various tools available in ArcMap™ and the Esri 
Spatial Analyst™ extension package.
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NOMINAL DATA TREATMENT

The NLCD is maintained and made publicly available on-
line by the USGS. Derived from unsupervised classifica-
tion (Anderson et al. 1976) of Landsat Enhanced Thematic 
Mapper+ (ETM+) data, it provides nationally-consistent 
land cover for the entire conterminous United States at 
30 m pixel resolution (Homer et al. 2007). The NLCD 
contains several distinct datasets, including a categorical 
classed land cover layer, and percent-coverage layers for 
tree canopy and impervious surface. While there exist 
sporadic coverages of authoritative land cover data at high-
er spatial resolutions throughout the United States, their 
lack of ubiquity makes them a problematic source for na-
tionwide mapping.

Reclassification

One of the main generalization operations we undertake 
is simple reclassification, reducing the dozens of NLCD 
classes to four categorical classes and two magnitude class-
es. This is done to minimize thematic and visual complex-
ity of the land cover presented to the reader, such that the 
product land cover serves as a generalized overview, rather 
than a high-resolution analytical data layer. The process 
is opposite to the aim of super-resolution, where smaller 
pixel sizes are sought in order to determine sub-input-pixel 
thematic variation. The aim here is to produce a general 
impression of land cover rather than provide precision car-
tometric analysis data.

The classed layer of the 2006 NLCD uses a scheme equiv-
alent to the Anderson Land Cover Classification System 
(Anderson et al. 1976). We reclassify these to three class-
es, being agricultural, grassland, and barren land (Table 
1). Agricultural land includes all types of land used to 
grow food or animal feed (i.e., row crops, orchards, pas-
ture, etc.), and is aggregated to a single class to denote 
areas where topographic map users would presumably 
want to avoid trespassing. Our grasslands class includes 
all the classes from the “shrubland” and “herbaceous” su-
percategories of the NLCD, thereby denoting any lands 
principally bearing small shrubs, grasses, sedge and moss 
that hasn’t been classed as pasture (i.e., isn’t commercially 
used). The barren land class includes those areas classed 
in the NLCD as rocky, sandy, or made of clay, and gen-
erally devoid of vegetation (i.e., deserts, talus, bedrock, 
etc.). Grassland and barren land are given in our output 
base map as two general types of landscapes topographic 
map users may find passable. These three classes are given 

on the assumption they provide a general impression of 
land cover for macro-level navigation and natural resource 
management, rather than a detailed analysis supported by 
the original NLCD and other land cover data sources.

Our reduction of the many NLCD classes is a basic model 
generalization operation (Sester 2008), engineered to keep 
the land cover base map visually and thematically simple, 
rather than complex. Greater numbers of classes are obvi-
ously possible (e.g., sub-classes of the existing three), but 
having them would require a larger palette of graphic vari-
ables to symbolize them. Greater thematic granularity of-
fered by higher numbers of classes comes at the expense of 
greater graphic complexity, and, thereby, greater difficulty 
in map reading, and greater dependency on legends. In the 
context of a US Topo redesign, these three classes consti-
tute a significant increase over the previously non-existent 
land cover information, without introducing a great deal 
of visual complexity. We seek to keep the land cover the-
matically and visually simple on the rationale that other 
map layers overlaid should not have to overcome a complex 
land cover base map in the overall visual hierarchy.

Water bodies such as ocean, lakes, rivers, and reservoirs 
are the fourth categorical class in our land cover layer. This 
is produced using National Hydrography Dataset (NHD) 
High Resolution (Simley & Carswell Jr. 2009) polygons 
by simple rasterization at the output resolution, and in-
cluded to denote areal bodies of water. Other hydrograph-
ic features such as glaciers and marshes are excluded; the 
rationale for this is that polygonal NHD data overlaid on 
our land cover base map can be used to symbolize these 
features more accurately than they are represented in the 
NLCD.

Canopy cover and impervious surface (i.e., built-up) areas, 
while present in the classed NLCD data, are instead 

Table 1. The input NLCD classes aggregated by reclassification 
into each of the three product classes.

Generalized Land Cover Class Input NLCD 2006 Classes

Agricultural land 81,82

Grasslands 51, 52, 71, 72, 73, 74

Barren Land 31,32
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represented in our method by their respective dedicat-
ed NLCD data layers, representing their percent cover-
age values with color saturation gradients. These pixels 
are prepared using a simple upsampling and thresholding 
technique described later.

Boundary Uncertainty Rationale 
for Class Edge Change

The next step in processing classed pixels for land cover is 
to introduce softer (i.e., less pixelated) edges between re-
gions. We describe the technical rationale for our impres-
sionistic, “airbrush” solution in this section.

The raster data model is intuitive and simple, being a col-
lection of regularly-spaced samples or derived data points. 
The model is particularly useful and intuitive for con-
tinuous phenomena, since the topology of and distance 
between data points is implicit. Nonetheless, there exist 
certain conceptual ambiguities in the model, particularly 
with respect to pixel assignment and the fact that cell size 
is variable (Raposo & Samsonov 2014). Classed rasters 
contain cells whose category has to be defined by some sta-
tistical process, though the signal present in the cell area 
during data capture typically varies throughout, as is the 
case in mixed pixels. Also, the variable cell resolution in 
the model directly introduces the Modifiable Areal Unit 
Problem (Openshaw 1984).

The latter problem, arising from variable cell sizes, is par-
ticularly salient whenever raster resolution is changed, 
such as in resampling to a larger cell size for map general-
ization. Cell size is directly related to the spatial precision 
of the dataset, and changes to resolution drive error prop-
agation through scale. In spatial data such as geograph-
ic rasters, the measure of space over which one sample is 
collected, being the cell size, is the spatial frequency of the 
dataset. The Nyquist-Shannon sampling theorem (Nyquist 
1928; Shannon & Weaver 1949) describes the frequency 
range over which data of a given sampling frequency can 
be considered precise. In rasters, the cell size determines 
the distance over which the dataset is imprecise. According 
to the theorem, a dataset should have a frequency of one-
half or smaller than the highest frequency (i.e., smallest 
variation) of the phenomenon it seeks to reliably sample or 
represent. By corollary, a dataset is imprecise over distanc-
es smaller than twice the model frequency resolution. For 
geographic rasters, this translates to twice the pixel size 
(Tobler 1987). This means that single pixels, in terms of 

their ability to differentiate geographic variable fluctuation 
across their extents, should be regarded with considerable 
uncertainty. Of course, the foregoing has not considered 
classification accuracy; for the purposes of this work, we 
assume no classification uncertainty or error.

With geographic phenomena such as land cover, raster 
pixel uncertainty is compounded by the naturally impre-
cise boundaries frequently encountered in the physical 
world. Grasslands, for example, regularly grade into their 
neighboring areas, such as forests or deserts. Certain land 
cover regions have more sharply-defined borders than oth-
ers, such as roadways or mechanically-tended agricultural 
fields. In the case of fine-enough raster data, sharp bound-
aries are representable, but the location of these is not pre-
cisely represented if the data are coarse, and therefore the 
exact location of such boundaries must be regarded as un-
certain in the absence of other, more precise data.

The Uncertainty Corridor

The two interacting factors of natural edge ambiguity and 
cell imprecision lead us to consider boundaries between 
raster land cover classes as lying along an uncertainty cor-
ridor, constituted of mixed pixels. Figure 3 illustrates the 
uncertainty corridor between two distinct land cover re-
gions. According to the sampling theorem, we cannot be 
certain of precisely detecting or representing an object that 
is smaller than twice the pixel size. It follows that the pre-
cision of the location at which one land cover class ceases 
and another begins is no finer than the width of two cells 

Figure 3. The uncertainty corridor between two raster 
class regions.
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in our input data. We therefore 
regard the cell immediately on 
either side of a region border 
as inherently uncertain, and 
use the concept of a 2-cell un-
certainty corridor to describe 
all such uncertain areas in the 
input raster.

We do not attempt an inter-
polation or super-resolution 
in the uncertainty corridor for 
several reasons. First, since the 
data are nominal, interpola-
tion and super-resolution are 
not arithmetically possible. 
Interpolation lacks theoretical 
basis, since the operation does 
not recover thematic variation 
not captured in the input data; 
in the absence of this we can-
not be certain any interpolated 
pixel is accurate. Interpolation, 
super-resolution, or mixed-pix-
el analysis could be attempted 
on raw, multi-band sensor data 
and used to create a classed 
land cover raster at  an ap-
propriate resolution; such a 
process would involve compu-
tation costs that may make it impractical for map series 
production.

“AIRBRUSH” REGION EDGE TREATMENT

The process of categorical land cover class generalization 
is illustrated in Figures 4 and 5 over a small agricultur-
al region; the same processing is applied to grassland and 
barren land regions. The reclassification described earlier 
is illustrated across numbers 1 and 2 in Figure 4.

Following reclassification, the raster regions are shrunk 
by 2 cells and expanded back by 1. This process, common 
in morphological analysis, has several purposes. First, it 
eliminates single cells or areas where a class is only 1 or 2 
cells wide (i.e., below the width that can be safely regard-
ed as precise), thereby simplifying the shapes and spatial 
distribution of land cover patches, and removing impre-
cise, isolated cells. This leaves regions one cell thinner 

than they are in the input data (see Figure 4, number 3). 
Removing isolated or thin regions of cells in this manner 
reduces the analytical precision of the data, but this is by 
design, since the product being developed is a generalized 
land cover base map and not a precise analytical dataset.

The shrink-and-expand process creates the 2-cell, 60 m 
wide uncertainty corridor between any two adjacent re-
gions (see Figure 3). The shrunk regions are polygonized, 
and buffers are calculated around them (Figure 4, num-
ber 4). Buffer regions are 30 m wide, corresponding to the 
input cell size and one-half the width of the uncertainty 
corridor.

The shrunk class regions are now upsampled to 2 m res-
olution. A random-assignment raster is calculated in 
the buffered regions around these, also at 2 m resolution 
(Figure 4, number 5). This raster is generated such that 
one out of every five pixels contain a binary flag, with all 

Figure 4. The process of categorical land cover class generalization (part 1 of 2).
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other pixels being null. The ras-
ter containing the regions and 
that containing the random-
ly-placed pixels are mosaicked 
into one. Each of the isolated, 
randomly-placed pixels is used 
as a seed around which the edge 
of the raster class is expanded 
by seveb, 2 m cells (Figure 4, 
number 6). This process cre-
ates a meandering, ragged edge 
around each land cover raster 
region, with a dispersed appear-
ance similar to airbrush paint-
ing. We remove most small gaps 
remaining in the uncertainty 
corridor, as well as simplify the 
boundary edge, by expanding 
and shrinking the class pixel 
regions by 3 pixels (see Figure 
5 numbers 7 and 8). At this 
point, the final class boundary 
“airbrush” edges have been geo-
metrically defined.

The final product uses a color 
gradient effect at class edges to 
produce a feathered appearance. 
In order to provide for pixel 
values at the margins of class regions that will drive color 
gradients, two more transformations occur. First, the class 
regions are inverted such that their areas become null cells, 
while other areas contain a binary flag (Figure 5, number 
9). The Euclidean distance for each null-value cell to the 
closest data-containing cell is calculated, yielding a dis-
tance raster inside the land cover class regions (see Figure 
5, number 10). To isolate only those cells near the margins 
of these regions, we apply a threshold to the distance raster 
such that all pixels with values greater than 10 (i.e., all pix-
els further than 10 m from the margin) are given the value 
of 10; this produces “plateaus” in each land cover class re-
gion (Figure 5, number 11). Class regions now have cell 
values between 0 and 10, with values increasing inward in 
the area within 10 m of the region edge. These distance 
numbers are later used to drive color gradient application 
to create the feathered, “airbrushed” appearance desired; 
internal areas of regions take on a full classification color, 
while the edges feather to allow class colors to gradually 

modulate into each other. The culmination of this edge 
gradient with the meandering, randomized edges each 
class is given is the basis of the “airbrushing” name we give 
the process.

TREATMENT OF RATIO LAND COVER 
CLASSES

Interpolation and thresholding constitute the data pro-
cessing procedures for percent canopy and impervious sur-
face data. For each, the raster is upsampled using bilinear 
interpolation three times, from 30 m cells to 15 m, then 
to 5m, and finally to the target resolution of 2 m. The ob-
jective of this repeated resampling is to ensure a smooth 
interpolation. The interpolated raster is then thresholded 
at 20%, so that areas below 20% are removed. Figure 6 
illustrates the results of this procedure on percent imper-
vious surface and canopy rasters. The top row shows the 
original 30 m NLCD cells, while the bottom row shows 
our generalized, higher-resolution product. Impervious 

Figure 5. The process of 
categorical land cover class 
generalization (part 2 of 2).
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surface shows as increasingly white, while canopy shows as 
increasingly green.

CANVAS “PATCHING”

Once the categorical and ratio classes have been pro-
cessed, their spatial union is calculated. Any isolated areas 
of the map where no class is assigned are identified. This 
is necessary since the airbrushed classed regions have sto-
chastic edges and the thresholded regions have threshold-
ed ones, making it likely that small unclassed patches, a 
few pixels in width, occur between classed regions. Some 
of these areas will correspond to small classed areas in 
the classed NLCD input that were deliberately removed 
at the earlier shrink and expand operations. These regions 
occur within the uncertainty corridor and are by definition 
less than 2 input pixels (60 m) in width; they are typical-
ly much thinner still. At the margins of the impervious 
surface and canopy rasters, visual inspection over multiple 
examples determined that empty class areas created by the 
20% thresholding were virtually equivalent in size to those 
defined between classed regions. We term these areas 
“patches,” and resolve the issue of their presence in the de-
sign phase of our process by giving these pixels a neutral 
“canvas” color. The selection of this color reflects those we 
make for our classes so that all colors blend together, both 

in the design and perceptual senses; further discussion 
of the use of color in our solution is given below. Once 
colored appropriately, these areas serve as small, gradual 
transitions between classes in the manner described by 
Jenny, Jenny, and Cron (2012).

As mentioned before, areas containing certain hydro-
graphic features such as glaciers and marshes are not in-
cluded in our output land cover classification. As with 
“patches,” these areas are classed to also carry the neutral 
canvas color. This reflects our design decision to use vector 
NHD data to represent these features, above the general-
ized land cover base map (i.e., glaciers shown with poly-
gons, marshes shown with texture and pattern fills).

FINAL RASTER FLATTENING

The final spatial processing step in the method is to mosaic 
the nominal rasters, ratio rasters, and patches into a single, 
flattened raster layer. Since there will be small overlaps 
between classes for the same reasons there were patches 
between them, classes are mosaicked together using a hi-
erarchy of decreasing importance:

1.	 rasterized hydrography (the most precise layer)

2.	 percent impervious surface

3.	 percent tree canopy coverage

4.	 agricultural areas

5.	 grassland areas

6.	 barren areas

7.	 patches

The rationale behind this hierarchy is that the location 
of anthropogenic land cover class boundaries will be of 
greater importance to most US Topo users than will the 
boundaries of natural classes. This reflects findings from 
a USGS National Map User survey, where respondents 
indicated a desire to have access to data that would exhib-
it changes over time (Sugarbaker et al. 2009). Rasterized 
hydrographic features are given top priority because they 
are the most precise of all the datasets going into the land 
cover raster. Impervious surface, most frequently repre-
senting concrete, asphalt, and other human-created land 
cover, is then the next most prioritized land cover type. 
Tree canopy is next, since this is a long-standing feature 
type relevant to topographic maps, and present in some 
historical and recent versions of USGS topographic series. 

Figure 6. Percent impervious surface (left) and percent canopy 
coverage (right) rasters before (top, 30 m cells) and after (bottom, 
2 m cells) resampling and thresholding.
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Percent impervious and canopy coverage are also given 
greater priority over the three categorical land cover types 
since their upsampling represents a true spatial interpola-
tion (rather than a stochastic edge derivation), and because 
these layers are more informative in that they represent 
continuous magnitudes rather than nominal classes. The 
three remaining nominal classes follow, in order of pre-
sumed usefulness for navigation or natural resource man-
agement. Finally, canvas patches fill any space not claimed 
by at least one of the preceding classes, including areas 
more precisely mapped with NHD vector symbols such as 
glaciers or wetlands.

The output land cover base map is created as an 8-bit 
raster, to which a color map is applied. An 8-bit raster is 
chosen because it keeps file sizes small, relative to deep-
er bit depths. Before f lattening, pixel values among the 
nominal land cover classes are 0 through 10 m, and 20% 
through 100% for the ratio classes, after each class has 

been thresholded. Cell values are remapped for each class 
using simple offsets such that each populates a predefined 
integer range between 0 and 255 (Table 2).

COLORS

In addition to the airbrushed edge, the deliberately vague, 
“impressionistic” edges rely heavily on class colors whose 
lightness values are very similar. Color lightness, also 
called “value” or “luminosity,” is a parameter distinct from 
hue and saturation. When colors of similar lightness are 
presented in adjacent areas, the human eye has little abil-
ity to differentiate between them, even across different 
hues and saturation levels (Livingstone and Hubel 1988; 
Brewer 1994; 1996). We use this effect in our color selec-
tions to make the location of where one land cover class 
ends and another begins deliberately unclear. When the 
final land cover layer is translucent and used with an un-
derlying orthoimage, these locations are made somewhat 
sharper by lightness differences in the imagery.

Land Cover Class Original Value Range Remapped Range in 0–231

Water Bodies 1 0
Percent Impervious Surface 20–100 (percentages) 20–100

Percent Canopy Cover 20–100 (percentages) 120-200
Agricultural Lands 0–10 (airbrush edge distances) 201–210

Grasslands 0–10 (airbrush edge distances) 211–220
Barren Lands 0–10 (airbrush edge distances) 221–230

Patches 1 231

Table 2. The classes used in the land cover implementation, their input values at the end of geoprocessing, and their remapped cell values 
in a single 8-bit integer raster for symbolization using a color map.

Table 3. Color specifications.

Class Color RGB Lightness x/255 Notes

Agricultural (214, 209, 148) 170

Grassland (181, 196, 171) 173

Barren (227, 179, 148) 176

Canvas (212, 193, 174) 182 Constant

Water (179, 189, 196) 176 Constant

Forested (0, 112, 0) 53 Color at 100%

Built-Up (255, 255, 255) 255 Color at 100%
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The color palette used in our final land cover map layer is 
given in Table 3. Lightness values for agricultural areas, 
grasslands, barren areas, water bodies and canvas areas 
are kept similar at approximately 69% (using HSV in 
the RGB color model). Forested and built-up categories 
grade in lightness according to the percent coverage in the 
given pixel, and thereby do not maintain a similar light-
ness value. However, because these two classes naturally 
f luctuate from low to high lightness values throughout 
the mapped area, they too have an airbrush-like, painterly 
effect.

Linear color ramps are used for all nominal raster classes 
(Figure 7). A linear color ramp is defined for each class, 
starting at the common, neutral canvas color, and ramping 
up to the palette color for the class. In the case of agricul-
tural, grassland, and barren classes, canvas is used at the 
very outer class edge (i.e., at the center of the uncertainty 
corridor) and the class color is used at the inside end of the 
feathered-edge gradient (at 10 m into the region), as well 
as throughout the region’s inner area. In the case of percent 

canopy and impervious surface classes, canvas is used at 
the lowest value (20%), and the palette class color is used 
at full coverage (100%). These color choices allow adjacent, 
differently-colored regions to visually fade into each other; 
the sum effect of these color choices along with the ran-
domized edge generation described before constitute the 
“airbrushed” land cover base map effect (Figure 8).

To implement automatic color assignment, we created a 
color map file (i.e., an Esri .lyr file) containing our color 
ramps defined over the integer ranges to which we alge-
braically shifted our raster classes. An RGB value is spec-
ified for each integer value in the final, algebraically-shift-
ed raster (see Table 2). ArcMap™ uses this color map file 
to define the symbology for any land cover raster produced 
by our method, producing consistent symbology across 
any number of maps in series.

D E M O N S T R AT I O N:  L A N D  COV E R  AT  1:2 4 ,0 0 0
Figures 1, 9, 10, and 11 provide examples of our land 
cover map layer in conjunction with other typical map lay-
ers: road and hydrographic vectors, terrain shading, and 
orthoimagery. The land cover layer is particularly effective 
as a translucent overlay on orthoimagery because it recol-
ors the imagery, providing ancillary visual cues to suggest 
what is present at any location. This recoloring also applies 
some degree of standardization of color to the base map 

when an orthoimage is present, unifying the overall ap-
pearance. The use of white for built-up areas helps to ac-
centuate roadways in particular, especially when these are 
symbolized with white or pale vector lines. This “ghosting” 
or “glow” effect is particularly helpful where roads are ap-
parent in the orthoimagery but absent in the vector data, 
as is sometimes the case for The National Map.

Figure 7. The palette of color gradients used.

Figure 8. The “airbrush” edge effect for region border 
ambiguation, using stochastically-generated edges and colors of 
very similar lightness.
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T R E ATM E N T S  F O R  S M A L L E R  M A P 
S C A L ES
The same design concept is applied to small-scale 
land cover. Processing is similar but simpler, since only 
generalization and not edge enhancement is required at 
coarser map resolutions; i.e., there is no need to derive 
sub-pixel classes. The product land cover consists of the 
same five land cover classes, plus water bodies; “canvas” 
patches are unnecessary, because no stochastic airbrushing 
is used. The three input rasters are first reclassified, fol-
lowing exactly as in the large-scale land cover (see Table 
1). NLCD data are resampled to a resolution equal to 
0.00025 times the target scale, using nearest neighbor re-
sampling for the classed NLCD data, and cubic convolu-
tion for both the percent impervious and percent canopy 

rasters. The percent impervious surface and canopy ras-
ters are thresholded for values 20% and higher, as in the 
1:24,000 case. Water body polygons are rasterized at the 
calculated resolution. The land cover class rasters are mo-
saicked with the same priority order as used in the large-
scale processing (minus canvas patches). The same color 
specifications are used, with the exception that agricul-
tural lands, grasslands, and barren lands are represented 

Figure 9. St. Louis, Missouri. Figure 10. Memphis, Texas.

Figure 12. Multi-scale land cover products.

Figure 11. Atlanta, Georgia.
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without color ramps at their edges. The product land cover 
still exhibits a painterly quality, despite no longer using the 
“airbrush” effect at class edges, because the similar color 
lightness values continue to effectively blur edges.

Figure 12 illustrates the product of this processing at 
various scales in the area around Memphis, Texas. The 

original-resolution NLCD data are reclassified and col-
ored according to our specifications in A, the product of 
our large-scale processing is shown in B, and land cover 
for two sample smaller scales are shown in C and D, 
respectively.

CO N C L U S I O N S
Our cartographic solution achieves an infor-
mative land cover base map layer for use at 1:24,000 or 
similarly large topographic map scales from NLCD data 
which have been both generalized (i.e., reclassified into 
fewer classes and geometrically simplified) and enhanced 
(i.e., produced at higher resolution with randomized class 
edges). The goal of the resulting land cover base map is not 
to improve the analytical usefulness of NLCD data or to 
present a map layer for precise cartometric analysis; rather, 
it is a solution for making use of coarse land cover data at 
larger map scales when an imprecise general impression of 
land cover constitutes an acceptable base map.

Increasing the resolution of spatial data by interpolation 
is a dubious task when there is no further information 
by which to be certain about the interpolation accuracy. 
Usually, when two or more layers at different spatial res-
olutions need to be used together in cartographic repre-
sentation or analysis, the finer-resolved ones are coarsened 
to match the coarsest one. This paper has presented work 
that has attempted to do the opposite for the sake of solv-
ing a practical map design problem posed by the USGS. 
We have based our methods on scientific principles, but 
there is undoubtedly also a great deal of art and subjective 
creativity in our approach.

Our cartographic product successfully provides a gen-
eralized and painterly representation of land cover. The 
same methods might be useful for other kinds of classed 

phenomena, with the proviso that uncertain, ambiguous 
boundary edges are appropriate or acceptable. The repre-
sentation produced by this method is abstract, and does 
not achieve greater precision than the input pixels. Indeed, 
while the pixels in the output have been made finer, this 
has deliberately happened at the expense of precision. As 
discussed above, this loss of certainty remains constrained 
to boundary edges.

We believe this generalized representation is useful for 
several reasons, especially when applied to land cover. 
First, imprecise region borders often reflect reality, such as 
might be seen between forests and grasslands, where types 
of land cover grade into each other. Also, the product land 
cover layer is an image, much like a photograph, mean-
ing that it readily lends itself to scaling and zooming as 
a reader explores a topographic map in any “slippy” map 
digital context where pan and zoom functionality is avail-
able (e.g., a US Topo GeoPDF file). We hope our product 
land cover base map conveys our intention: that general 
impressions of the land cover can be identified for the sake 
of map viewing and visualization, but that borders, given 
the data at hand, need not be precisely delineated.

NOTE

Python source code for the scripts developed and used 
here is available by contacting the authors.
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